TY - GEN A1 - Morel, T. A1 - Castro, Norberto A1 - Fossati, Luca A1 - Hubrig, Swetlana A1 - Langer, N. A1 - Przybilla, Norbert A1 - Schöller, Markus A1 - Carroll, Thorsten Anthony A1 - Ilyin, Ilya A1 - Irrgang, Andreas A1 - Oskinova, Lida A1 - Schneider, Fabian R. N. A1 - Simon Díaz, Sergio A1 - Briquet, Maryline A1 - González, Jean-Francois A1 - Kharchenko, Nina A1 - Nieva, M.-F. A1 - Scholz, Ralf-Dieter A1 - de Koter, Alexander A1 - Hamann, Wolf-Rainer A1 - Herrero, Artemio A1 - Maíz Apellániz, Jesus A1 - Sana, Hugues A1 - Arlt, Rainer A1 - Barbá, Rodolfo H. A1 - Dufton, Polly A1 - Kholtygin, Alexander A1 - Mathys, Gautier A1 - Piskunov, Anatoly E. A1 - Reisenegger, Andreas A1 - Spruit, H. A1 - Yoon, S.-C. T1 - The B fields in OB stars (BOB) survey T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The B fields in OB stars (BOB) survey is an ESO large programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. As of July 2014, a total of 98 objects were observed over 20 nights with FORS2 and HARPSpol. Our preliminary results indicate that the fraction of magnetic OB stars with an organised, detectable field is low. This conclusion, now independently reached by two different surveys, has profound implications for any theoretical model attempting to explain the field formation in these objects. We discuss in this contribution some important issues addressed by our observations (e.g., the lower bound of the field strength) and the discovery of some remarkable objects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 821 KW - magnetic fields KW - stars: early-type KW - stars: magnetic fields KW - stars: individual (HD 164492C, CPD –57 ◦ 3509, HD 54879, β CMa, ε CMa) Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415238 SN - 1866-8372 IS - 821 ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Fossati, Luca A1 - Carroll, Thorsten Anthony A1 - Castro, Norberto A1 - Gonzalez, J. F. A1 - Ilyin, Ilya A1 - Przybilla, Norbert A1 - Schoeller, M. A1 - Oskinova, Lida A1 - Morel, T. A1 - Langer, N. A1 - Scholz, Ralf-Dieter A1 - Kharchenko, N. V. A1 - Nieva, M. -F. T1 - B fields in OB stars (BOB): The discovery of a magnetic field in a multiple system in the Trifid nebula, one of the youngest star forming regions JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. Recent magnetic field surveys in O- and B-type stars revealed that about 10% of the core-hydrogen-burning massive stars host large-scale magnetic fields. The physical origin of these fields is highly debated. To identify and model the physical processes responsible for the generation of magnetic fields in massive stars, it is important to establish whether magnetic massive stars are found in very young star-forming regions or whether they are formed in close interacting binary systems. Methods. In the framework of our ESO Large Program, we carried out low-resolution spectropolarimetric observations with FORS 2 in 2013 April of the three most massive central stars in the Trifid nebula, HD 164492A, HD 164492C, and HD 164492D. These observations indicated a strong longitudinal magnetic field of about 500-600 G in the poorly studied component HD 164492C. To confirm this detection, we used HARPS in spectropolarimetric mode on two consecutive nights in 2013 June. Results. Our HARPS observations confirmed the longitudinal magnetic field in HD 164492C. Furthermore, the HARPS observations revealed that HD 164492C cannot be considered as a single star as it possesses one or two companions. The spectral appearance indicates that the primary is most likely of spectral type B1-B1.5 V. Since in both observing nights most spectral lines appear blended, it is currently unclear which components are magnetic. Long-term monitoring using high-resolution spectropolarimetry is necessary to separate the contribution of each component to the magnetic signal. Given the location of the system HD 164492C in one of the youngest star formation regions, this system can be considered as a Rosetta Stone for our understanding of the origin of magnetic fields in massive stars. KW - binaries: close KW - stars: early-type KW - stars: fundamental parameters KW - stars: magnetic field KW - stars: variables: general KW - stars: individual: HD 164492C Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201423490 SN - 0004-6361 SN - 1432-0746 VL - 564 PB - EDP Sciences CY - Les Ulis ER -