TY - JOUR A1 - Wieczorek, Mareike A1 - Kruse, Stefan A1 - Epp, Laura Saskia A1 - Kolmogorov, Alexei A1 - Nikolaev, Anatoly N. A1 - Heinrich, Ingo A1 - Jeltsch, Florian A1 - Pestryakova, Luidmila Agafyevna A1 - Zibulski, Romy A1 - Herzschuh, Ulrike T1 - Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study JF - Ecology : a publication of the Ecological Society of America N2 - Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field-and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least similar to 240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning similar to 130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future. KW - climate change KW - closed forest KW - dendroecology KW - forest change KW - latitude KW - recruitment KW - tundra KW - vegetation model Y1 - 2017 U6 - https://doi.org/10.1002/ecy.1887 SN - 0012-9658 SN - 1939-9170 VL - 98 SP - 2343 EP - 2355 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wasof, Safaa A1 - Lenoir, Jonathan A1 - Gallet-Moron, Emilie A1 - Jamoneau, Aurelien A1 - Brunet, Jörg A1 - Cousins, Sara A. O. A1 - De Frenne, Pieter A1 - Diekmann, Martin A1 - Hermy, Martin A1 - Kolb, Annette A1 - Liira, Jaan A1 - Verheyen, Kris A1 - Wulf, Monika A1 - Decocq, Guillaume T1 - Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-western Europe JF - Global ecology and biogeography : a journal of macroecology N2 - Aim In response to environmental changes and to avoid extinction, species may either track suitable environmental conditions or adapt to the modified environment. However, whether and how species adapt to environmental changes remains unclear. By focusing on the realized niche (i.e. the actual space that a species inhabits and the resources it can access as a result of limiting biotic factors present in its habitat), we here examine shifts in the realized-niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) of 26 common and widespread forest understorey plants across their distributional ranges. Location Temperate forests along a ca. 1800-km-long latitudinal gradient from northern France to central Sweden and Estonia. Methods We derived species' realized-niche width from a -diversity metric, which increases if the focal species co-occurs with more species. Based on the concept that species' scores in a detrended correspondence analysis (DCA) represent the locations of their realized-niche positions, we developed a novel approach to run species-specific DCAs allowing the focal species to shift its realized-niche position along the studied latitudinal gradient while the realized-niche positions of other species were held constant. Results None of the 26 species maintained both their realized-niche width and position along the latitudinal gradient. Few species (9 of 26: 35%) shifted their realized-niche width, but all shifted their realized-niche position. With increasing latitude, most species (22 of 26: 85%) shifted their realized-niche position for soil nutrients and pH towards nutrient-poorer and more acidic soils. Main conclusions Forest understorey plants shifted their realized niche along the latitudinal gradient, suggesting local adaptation and/or plasticity. This macroecological pattern casts doubt on the idea that the realized niche is stable in space and time, which is a key assumption of species distribution models used to predict the future of biodiversity, hence raising concern about predicted extinction rates. KW - Beta diversity KW - climate change KW - detrended correspondence analyses KW - Ellenberg indicator values KW - forest understorey plant species KW - niche optimum KW - niche width KW - plant community KW - realized niche Y1 - 2013 U6 - https://doi.org/10.1111/geb.12073 SN - 1466-822X VL - 22 IS - 10 SP - 1130 EP - 1140 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Vindas-Picado, José A1 - Yaney-Keller, Adam A1 - St. Andrews, Laura A1 - Panagopoulou, Aliki A1 - Santidrián Tomillo, Pilar T1 - Effectiveness of shading to mitigate the impact of high temperature on sea turtle clutches considering the effect on primary sex ratios JF - Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change N2 - Developmental success of sea turtle clutches depends on incubation temperature, which also determines sex ratio of hatchlings. As global temperatures are rising, several studies have proposed mitigation strategies such as irrigation and shading to increase hatching success. Our study expands upon this research and measures the effects of using boxes with different degrees of shade coverage (50%, 80%, and 90%) on sand temperature and water content. Boxes were fully covered with fabric in 2017/2018 (top and sides) but were side open in 2018/2019. We took measurements at olive ridley (Lepidochelys olivacea) and leatherback (Dermochelys coriacea) turtle nest depths (45 and 75 cm) at Playa Grande, Costa Rica. Shading reduced temperature by up to 0.8 degrees C and up to 0.4 degrees C at 45 cm and 75 cm, respectively. There were statistically significant differences between shading and control treatments at both depths, but differences between shade treatments were only significant when using side open boxes, possibly due to air flow. Shading had no effect on water content. While the impact of using shaded boxes on temperature was low, the potential impact on primary sex ratios was large. If shading were applied to leatherback clutches, the percentage of female hatchlings could vary by up to 50%, with a maximum difference around the pivotal temperature (temperature with 1:1 sex ratio). Shading can be useful to increase hatching success, but we recommend avoiding it at temperatures within the transitional range (temperatures that produce both sexes), or using it only during the last third of incubation, when sex is already determined. As global warming will likely continue, understanding potential impact and effectiveness of mitigation strategies may be critical for the survival of threatened sea turtle populations. KW - climate mitigation KW - climate change KW - hatchery KW - hatching success KW - TSD Y1 - 2020 U6 - https://doi.org/10.1007/s11027-020-09932-3 SN - 1381-2386 SN - 1573-1596 VL - 25 IS - 8 SP - 1509 EP - 1521 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - van Rees, Charles B. A1 - Waylen, Kerry A. A1 - Schmidt-Kloiber, Astrid A1 - Thackeray, Stephen J. A1 - Kalinkat, Gregor A1 - Martens, Koen A1 - Domisch, Sami A1 - Lillebo, Ana A1 - Hermoso, Virgilio A1 - Grossart, Hans-Peter A1 - Schinegger, Rafaela A1 - Decleer, Kris A1 - Adriaens, Tim A1 - Denys, Luc A1 - Jaric, Ivan A1 - Janse, Jan H. A1 - Monaghan, Michael T. A1 - De Wever, Aaike A1 - Geijzendorffer, Ilse A1 - Adamescu, Mihai C. A1 - Jähnig, Sonja C. T1 - Safeguarding freshwater life beyond 2020 BT - recommendations for the new global biodiversity framework from the European experience JF - Conservation letters N2 - Plans are currently being drafted for the next decade of action on biodiversity-both the post-2020 Global Biodiversity Framework of the Convention on Biological Diversity (CBD) and Biodiversity Strategy of the European Union (EU). Freshwater biodiversity is disproportionately threatened and underprioritized relative to the marine and terrestrial biota, despite supporting a richness of species and ecosystems with their own intrinsic value and providing multiple essential ecosystem services. Future policies and strategies must have a greater focus on the unique ecology of freshwater life and its multiple threats, and now is a critical time to reflect on how this may be achieved. We identify priority topics including environmental flows, water quality, invasive species, integrated water resources management, strategic conservation planning, and emerging technologies for freshwater ecosystem monitoring. We synthesize these topics with decades of first-hand experience and recent literature into 14 special recommendations for global freshwater biodiversity conservation based on the successes and setbacks of European policy, management, and research. Applying and following these recommendations will inform and enhance the ability of global and European post-2020 biodiversity agreements to halt and reverse the rapid global decline of freshwater biodiversity. KW - climate change KW - conservation KW - ecosystem services KW - rivers KW - sustainable KW - development goals KW - water resources KW - wetlands Y1 - 2020 U6 - https://doi.org/10.1111/conl.12771 SN - 1755-263X VL - 14 IS - 1 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - van Kleunen, Mark A1 - Essl, Franz A1 - Pergl, Jan A1 - Brundu, Giuseppe A1 - Carboni, Marta A1 - Dullinger, Stefan A1 - Early, Regan A1 - Gonzalez-Moreno, Pablo A1 - Groom, Quentin J. M. A1 - Hulme, Philip E. A1 - Kueffer, Christoph A1 - Kühn, Ingolf A1 - Maguas, Cristina A1 - Maurel, Noelie A1 - Novoa, Ana A1 - Parepa, Madalin A1 - Pysek, Petr A1 - Seebens, Hanno A1 - Tanner, Rob A1 - Touza, Julia A1 - Verbrugge, Laura A1 - Weber, Ewald A1 - Dawson, Wayne A1 - Kreft, Holger A1 - Weigelt, Patrick A1 - Winter, Marten A1 - Klonner, Guenther A1 - Talluto, Matthew V. A1 - Dehnen-Schmutz, Katharina T1 - The changing role of ornamental horticulture in alien plant invasions JF - Biological reviews N2 - The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75% and 93% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions. KW - botanical gardens KW - climate change KW - horticulture KW - naturalised plants KW - ornamental plants KW - pathways KW - plant invasions KW - plant nurseries KW - trade KW - weeds Y1 - 2018 U6 - https://doi.org/10.1111/brv.12402 SN - 1464-7931 SN - 1469-185X VL - 93 IS - 3 SP - 1421 EP - 1437 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Tabares Jimenez, Ximena del Carmen A1 - Zimmermann, Heike Hildegard A1 - Dietze, Elisabeth A1 - Ratzmann, Gregor A1 - Belz, Lukas A1 - Vieth-Hillebrand, Andrea A1 - Dupont, Lydie A1 - Wilkes, Heinz A1 - Mapani, Benjamin A1 - Herzschuh, Ulrike T1 - Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers JF - Ecology and evolution N2 - Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state. KW - climate change KW - fossil pollen KW - land-use change KW - savanna ecology KW - sedimentary ancient DNA KW - state and transition KW - tree-grass interactions Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5955 SN - 2045-7758 VL - 10 IS - 2 SP - 962 EP - 979 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Stiegler, Jonas A1 - Pahl, Janice A1 - Guillen, Rafael Arce A1 - Ullmann, Wiebke A1 - Blaum, Niels T1 - The heat is on BT - impacts of rising temperature on the activity of a common European mammal JF - Frontiers in Ecology and Evolution N2 - Climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe. Wildlife can respond to new climatic conditions, but the pace of human-induced change limits opportunities for adaptation or migration. Thus, how these changes affect behavior, movement patterns, and activity levels remains unclear. In this study, we investigate how extreme weather conditions affect the activity of European hares (Lepus europaeus) during their peak reproduction period. When hares must additionally invest energy in mating, prevailing against competitors, or lactating, we investigated their sensitivities to rising temperatures, wind speed, and humidity. To quantify their activity, we used the overall dynamic body acceleration (ODBA) calculated from tri-axial acceleration measurements of 33 GPS-collared hares. Our analysis revealed that temperature, humidity, and wind speed are important in explaining changes in activity, with a strong response for high temperatures above 25 & DEG;C and the highest change in activity during temperature extremes of over 35 & DEG;C during their inactive period. Further, we found a non-linear relationship between temperature and activity and an interaction of activity changes between day and night. Activity increased at higher temperatures during the inactive period (day) and decreased during the active period (night). This decrease was strongest during hot tropical nights. At a stage of life when mammals such as hares must substantially invest in reproduction, the sensitivity of females to extreme temperatures was particularly pronounced. Similarly, both sexes increased their activity at high humidity levels during the day and low wind speeds, irrespective of the time of day, while the effect of humidity was stronger for males. Our findings highlight the importance of understanding the complex relationships between extreme weather conditions and mammal behavior, critical for conservation and management. With ongoing climate change, extreme weather events such as heat waves and heavy rainfall are predicted to occur more often and last longer. These events will directly impact the fitness of hares and other wildlife species and hence the population dynamics of already declining populations across Europe. KW - activity KW - ODBA KW - animal tracking KW - European hare KW - extreme weather events KW - climate change Y1 - 2023 U6 - https://doi.org/10.3389/fevo.2023.1193861 SN - 2296-701X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - THES A1 - Stiegler, Jonas T1 - Mobile link functions in unpredictable agricultural landscapes N2 - Animal movement is a crucial aspect of life, influencing ecological and evolutionary processes. It plays an important role in shaping biodiversity patterns, connecting habitats and ecosystems. Anthropogenic landscape changes, such as in agricultural environments, can impede the movement of animals by affecting their ability to locate resources during recurring movements within home ranges and, on a larger scale, disrupt migration or dispersal. Inevitably, these changes in movement behavior have far-reaching consequences on the mobile link functions provided by species inhabiting such extensively altered matrix areas. In this thesis, I investigate the movement characteristics and activity patterns of the European hare (Lepus europaeus), aiming to understand their significance as a pivotal species in fragmented agricultural landscapes. I reveal intriguing results that shed light on the importance of hares for seed dispersal, the influence of personality traits on behavior and space use, the sensitivity of hares to extreme weather conditions, and the impacts of GPS collaring on mammals' activity patterns and movement behavior. In Chapter I, I conducted a controlled feeding experiment to investigate the potential impact of hares on seed dispersal. By additionally utilizing GPS data of hares in two contrasting landscapes, I demonstrated that hares play a vital role, acting as effective mobile linkers for many plant species in small and isolated habitat patches. The analysis of seed intake and germination success revealed that distinct seed traits, such as density, surface area, and shape, profoundly affect hares' ability to disperse seeds through endozoochory. These findings highlight the interplay between hares and plant communities and thus provide valuable insights into seed dispersal mechanisms in fragmented landscapes. By employing standardized behavioral tests in Chapter II, I revealed consistent behavioral responses among captive hares while simultaneously examining the intricate connection between personality traits and spatial patterns within wild hare populations. This analysis provides insights into the ecological interactions and dynamics within hare populations in agricultural habitats. Examining the concept of animal personality, I established a link between personality traits and hare behavior. I showed that boldness, measured through standardized tests, influences individual exploration styles, with shy and bold hares exhibiting distinct space use patterns. In addition to providing valuable insights into the role of animal personality in heterogeneous environments, my research introduced a novel approach demonstrating the feasibility of remotely assessing personality types using animal-borne sensors without additional disturbance of the focal individual. While climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe, in Chapter III, I uncovered the sensitivity of hares to temperature, humidity, and wind speed during their peak reproduction period. I found a strong response in activity to high temperatures above 25°C, with a particularly pronounced effect during temperature extremes of over 35°C. The non-linear relationship between temperature and activity was characterized by contrasting responses observed for day and night. These findings emphasize the vulnerability of hares to climate change and the potential consequences for their fitness and population dynamics with the ongoing rise of temperature. Since such insights can only be obtained through capturing and tagging free-ranging animals, I assessed potential impacts and the recovery process post-collar attachment in Chapter IV. For this purpose, I examined the daily distances moved and the temporal-associated activity of 1451 terrestrial mammals out of 42 species during their initial tracking period. The disturbance intensity and the speed of recovery varied across species, with herbivores, females, and individuals captured and collared in relatively secluded study areas experiencing more pronounced disturbances due to limited anthropogenic influences. Mobile linkers are essential for maintaining biodiversity as they influence the dynamics and resilience of ecosystems. Furthermore, their ability to move through fragmented landscapes makes them a key component for restoring disturbed sites. Individual movement decisions determine the scale of mobile links, and understanding variations in space use among individuals is crucial for interpreting their functions. Climate change poses further challenges, with wildlife species expected to adjust their behavior, especially in response to high-temperature extremes, and comprehending the anthropogenic influence on animal movements will remain paramount to effective land use planning and the development of successful conservation strategies. This thesis provides a comprehensive ecological understanding of hares in agricultural landscapes. My research findings underscore the importance of hares as mobile linkers, the influence of personality traits on behavior and spatial patterns, the vulnerability of hares to extreme weather conditions, and the immediate consequences of collar attachment on mammalian movements. Thus, I contribute valuable insights to wildlife conservation and management efforts, aiding in developing strategies to mitigate the impact of environmental changes on hare populations. Moreover, these findings enable the development of methodologies aimed at minimizing the impacts of collaring while also identifying potential biases in the data, thereby benefiting both animal welfare and the scientific integrity of localization studies. N2 - Die Bewegung von Tieren ist ein entscheidender Aspekt des Lebens, der ökologische und evolutionäre Prozesse beeinflusst. Sie spielt eine wichtige Rolle bei der Gestaltung der biologischen Vielfalt und verbindet Lebensräume und Ökosysteme miteinander. Anthropogene Landschaftsveränderungen, z.B. in der Landwirtschaft, können die Bewegung von Tieren behindern, indem sie ihre Fähigkeiten beeinträchtigen, Ressourcen innerhalb ihres täglichen Bewegungsradius zu lokalisieren und im größeren Maßstab, ihre Wanderung oder Ausbreitung limitieren. In dieser Thesis untersuche ich die Bewegungsmerkmale und Aktivitätsmuster des Feldhasen (Lepus europaeus), um seine Bedeutung als Schlüsselart in fragmentierten Agrarlandschaften zu verstehen. Ich lege faszinierende Ergebnisse vor, die die Bedeutung des Hasen für die Verbreitung von Saatgut, den Einfluss von Persönlichkeitsmerkmalen auf das Verhalten und die Raumnutzung, die Sensibilität des Hasen gegenüber extremen Witterungsbedingungen und die Auswirkungen von GPS-Empfängern auf die Aktivitätsmuster und das Bewegungsverhalten der Säugetiere beleuchten. In Kapitel I führte ich ein kontrolliertes Fütterungsexperiment durch, um den potenziellen Einfluss von Hasen auf die Samenausbreitung zu analysieren. Durch die zusätzliche Verwendung von GPS-Daten von Hasen in zwei kontrastierenden Landschaften konnte ich nachweisen, dass Hasen eine wichtige Rolle spielen, da sie in kleinen und isolierten Habitatfeldern als effektive mobile Verbindungsglieder für viele Pflanzenarten fungieren. Die Analyse der Samenaufnahme und des Keimungserfolgs zeigte, dass verschiedene Eigenschaften der Samen, wie Dichte, Oberfläche und Form, die Fähigkeit der Hasen, Samen durch Endozoochorie zu verbreiten, stark beeinflussen. Diese Ergebnisse verdeutlichen die Wechselwirkung zwischen Hasen und Pflanzengemeinschaften und liefern somit wertvolle Erkenntnisse über die Mechanismen der Samenverbreitung in fragmentierten Landschaften. Durch den Einsatz standardisierter Verhaltenstests in Kapitel II konnte ich konsistente Verhaltensreaktionen bei in Gefangenschaft lebenden Hasen aufdecken und zeitgleich den komplexen Zusammenhang zwischen Persönlichkeitsmerkmalen und räumlichen Mustern in Wildhasenpopulationen untersuchen. Diese Analyse bietet Einblicke in die ökologischen Interaktionen und die Dynamik von Hasenpopulationen in landwirtschaftlichen Lebensräumen. Indem ich das Konzept der Tierpersönlichkeit untersuchte, stellte ich eine Verbindung zwischen Persönlichkeitsmerkmalen und dem Verhalten von Hasen her. Ich habe gezeigt, dass die durch standardisierte Tests gemessene Kühnheit den individuellen Erkundungsstil beeinflusst, wobei schüchterne und kühne Hasen unterschiedliche Raumnutzungsmuster aufweisen. Meine Forschung liefert nicht nur wertvolle Einblicke in die Rolle der Tierpersönlichkeit in heterogenen Umgebungen, sondern stellt auch einen neuartigen Ansatz vor, der die Durchführbarkeit einer Fernbeurteilung von Persönlichkeitstypen mithilfe von am Tier angebrachten Sensoren ohne zusätzliche Störung des Zielindividuums demonstrierte. Da die Klimabedingungen die Aktivität und folglich die Fitness von Wildtierarten auf der ganzen Welt stark beeinflussen, habe ich in Kapitel III die Sensibilität von Hasen gegenüber Temperatur, Luftfeuchtigkeit und Windgeschwindigkeit während ihrer Hauptfortpflanzungszeit ermittelt. Ich stellte fest, dass die Aktivität stark auf hohe Temperaturen über 25 °C reagiert, wobei die Auswirkungen bei extremen Temperaturen von über 35 °C besonders ausgeprägt sind. Die nicht lineare Beziehung zwischen Temperatur und Aktivität war durch gegensätzliche Reaktionen bei Tag und Nacht gekennzeichnet. Diese Ergebnisse unterstreichen die Anfälligkeit der Hasen für den Klimawandel und die möglichen Folgen für ihre Fitness und Populationsdynamik bei einem anhaltenden Temperaturanstieg. Da solche Erkenntnisse nur durch Fangen und Besendern von Wildtieren ermöglicht werden können, habe ich in Kapitel IV die potenziellen negativen Auswirkungen auf das Individuuum, sowie den Erholungsprozess nach dem Anlegen des Halsbandes untersucht. Hierfür analysierte ich die zurückgelegten täglichen Entfernungen in Verbindung mit der Aktivität von 1451 terrestrischen Säugetieren aus 42 verschiedenen Arten während ihrer anfänglichen Verfolgung. Die Intensität der Störung sowie die Geschwindigkeit der Erholung variieren je nach Art, wobei Pflanzenfresser, Weibchen und Individuen, die in relativ abgelegenen Untersuchungsgebieten gefangen und mit Halsbändern versehen wurden, aufgrund bisher begrenzter anthropogener Einflüsse stärkere Störungen erfahren. Mobile Verbindungsglieder sind essentiell für die Erhaltung der Biodiversität, indem sie eine wichtige Rolle in der Dynamik und Resilienz von Ökosystemen spielen. Weiterhin macht ihre Fähigkeit, sich durch zerstückelte Landschaften zu bewegen sie zu wichtigen Schlüsselkomponenten bei der Wiederherstellung von zerstörten Landschaften. Individuelle Bewegungsentscheidungen bestimmen den Maßstab der mobilen Verbindungen und die Schwankungen der Raumnutzung unter Individuen zu verstehen ist unerlässlich, um deren Funktion zu interpretieren. Der Klimawandel stellt eine weitere Herausforderung dar, indem Wildtiere dazu gezwungen werden, sich zu adaptieren, insbesondere an Hochtemperatur-Extreme. Den anthropogenen Einfluss auf Tierbewegungen aufzudecken bleibt von größter Bedeutung in der Landnutzungsplanung und die Entwicklung von erfolgreichen Strategien zum Schutz der Natur. Diese Thesis liefert ein umfassendes ökologisches Verständnis von Feldhasen in Agrarlandschaften. Die Ergebnisse meiner Forschung unterstreichen die Bedeutung von Hasen als mobile Bindeglieder, den Einfluss von Persönlichkeitsmerkmalen auf Verhalten und räumliche Muster, die Anfälligkeit von Hasen gegenüber extremen Wetterbedingungen und die unmittelbaren Folgen der Halsbandanbringung auf Tierbewegungen. Damit leiste ich einen wertvollen Beitrag zum Schutz und zur Bewirtschaftung von Wildtieren, indem ich die Entwicklung von Strategien zur Abschwächung der Auswirkungen von Umweltveränderungen auf Hasenpopulationen unterstütze. Darüber hinaus ermöglichen diese Erkenntnisse die Entwicklung von Methoden, die darauf abzielen, die Folgen der Halsbandanbringung zu minimieren und gleichzeitig potenzielle Verzerrungen in den Daten zu identifizieren, was sowohl dem Tierschutz als auch der wissenschaftlichen Integrität von Lokalisierungsstudien zugutekommt. KW - European hare KW - mammals KW - ecology KW - animal personality KW - seed dispersal KW - movement ecology KW - tracking impacts KW - energy budget KW - climate change KW - accelerometry KW - GPS KW - tracking KW - Feldhase KW - GPS KW - Beschleunigungsmessungen KW - Tierpersönlichkeit KW - Klimawandel KW - Tierökologie KW - Energiebudget KW - Säugetiere KW - Bewegungsökologie KW - Samenausbreitung KW - Tierortung KW - Konsequenzen von Fang und Besenderung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-622023 ER - TY - JOUR A1 - Souto-Veiga, Rodrigo A1 - Groeneveld, Juergen A1 - Enright, Neal J. A1 - Fontaine, Joseph B. A1 - Jeltsch, Florian T1 - Declining pollination success reinforces negative climate and fire change impacts in a serotinous, fire-killed plant JF - Plant ecology : an international journal N2 - Climate change projections predict that Mediterranean-type ecosystems (MTEs) are becoming hotter and drier and that fires will become more frequent and severe. While most plant species in these important biodiversity hotspots are adapted to hot, dry summers and recurrent fire, the Interval Squeeze framework suggests that reduced seed production (demographic shift), reduced seedling establishment after fire (post fire recruitment shift), and reduction in the time between successive fires (fire interval shift) will threaten fire killed species under climate change. One additional potential driver of accelerated species decline, however, has not been considered so far: the decrease in pollination success observed in many ecosystems worldwide has the potential to further reduce seed accumulation and thus population persistence also in these already threatened systems. Using the well-studied fire-killed and serotinous shrub species Banksia hookeriana as an example, we apply a new spatially implicit population simulation model to explore population dynamics under past (1988-2002) and current (2003-2017) climate conditions, deterministic and stochastic fire regimes, and alternative scenarios of pollination decline. Overall, model results suggest that while B. hookeriana populations were stable under past climate conditions, they will not continue to persist under current (and prospective future) climate. Negative effects of climatic changes and more frequent fires are reinforced by the measured decline in seed set leading to further reduction in the mean persistence time by 12-17%. These findings clearly indicate that declining pollination rates can be a critical factor that increases further the pressure on the persistence of fire-killed plants. Future research needs to investigate whether other fire-killed species are similarly threatened, and if local population extinction may be compensated by recolonization events, facilitating persistence in spatially structured meta-communities. KW - climate change KW - fire frequency KW - interval squeeze KW - pollination KW - process-based simulation model KW - mediterranean-type ecosystem Y1 - 2022 U6 - https://doi.org/10.1007/s11258-022-01244-7 SN - 1385-0237 SN - 1573-5052 VL - 223 IS - 7 SP - 863 EP - 881 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Seifert, Linda I. A1 - Weithoff, Guntram A1 - Vos, Matthijs T1 - Extreme heat changes post-heat wave community reassembly JF - Ecology and evolution N2 - Climate forecasts project further increases in extremely high-temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta-community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re-establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29 degrees C and 39 degrees C). Animal species that suffered heat-induced extinction were subsequently re-introduced at the same time and density, in each of the two treatments. The 39 degrees C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re-establish itself in the postheat wave community. In contrast, such closure never occurred after a 29 degrees C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re-introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re-introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high-temperature events may change subsequent ecological recovery and even prevent the successful re-establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial to the success of species re-introduction programs and to our ability to restore ecosystems damaged by environmental extremes. KW - Biodiversity KW - climate change KW - conservation KW - ecological restoration KW - extinction KW - extreme temperature events KW - global warming KW - maximum temperature KW - variability Y1 - 2015 U6 - https://doi.org/10.1002/ece3.1490 SN - 2045-7758 VL - 5 IS - 11 SP - 2140 EP - 2148 PB - Wiley-Blackwell CY - Hoboken ER -