TY - THES A1 - Nozari, Samira T1 - Towards understanding RAFT aqueous heterophase polymerization T1 - Zum Verständnis der wässrigen Heterophasenpolymerisation mit RAFT N2 - Reversible addition-fragmentation transfer (RAFT) was used as a controlling technique for studying the aqueous heterophase polymerization. The polymerization rates obtained by calorimetric investigation of ab initio emulsion polymerization of styrene revealed the strong influence of the type and combination of the RAFT agent and initiator on the polymerization rate and its profile. The studies in all-glass reactors on the evolution of the characteristic data such as average molecular weight, molecular weight distribution, and average particle size during the polymerization revealed the importance of the peculiarities of the heterophase system such as compartmentalization, swelling, and phase transfer. These results illustrated the important role of the water solubility of the initiator in determining the main loci of polymerization and the crucial role of the hydrophobicity of the RAFT agent for efficient transportation to the polymer particles. For an optimum control during ab-initio batch heterophase polymerization of styrene with RAFT, the RAFT agent must have certain hydrophilicity and the initiator must be water soluble in order to minimize reactions in the monomer phase. An analytical method was developed for the quantitative measurements of the sorption of the RAFT agents to the polymer particles based on the absorption of the visible light by the RAFT agent. Polymer nanoparticles, temperature, and stirring were employed to simulate the conditions of a typical aqueous heterophase polymerization system. The results confirmed the role of the hydrophilicity of the RAFT agent on the effectiveness of the control due to its fast transportation to the polymer particles during the initial period of polymerization after particle nucleation. As the presence of the polymer particles were essential for the transportation of the RAFT agents into the polymer dispersion, it was concluded that in an ab initio emulsion polymerization the transport of the hydrophobic RAFT agent only takes place after the nucleation and formation of the polymer particles. While the polymerization proceeds and the particles grow the rate of the transportation of the RAFT agent increases with conversion until the free monomer phase disappears. The degradation of the RAFT agent by addition of KPS initiator revealed unambigueous evidence on the mechanism of entry in heterophase polymerization. These results showed that even extremely hydrophilic primary radicals, such as sulfate ion radical stemming from the KPS initiator, can enter the polymer particles without necessarily having propagated and reached a certain chain length. Moreover, these results recommend the employment of azo-initiators instead of persulfates for the application in seeded heterophase polymerization with RAFT agents. The significant slower rate of transportation of the RAFT agent to the polymer particles when its solvent (styrene) was replaced with a more hydrophilic monomer (methyl methacrylate) lead to the conclusion that a complicated cooperative and competitive interplay of solubility parameters and interaction parameter with the particles exist, determining an effective transportation of the organic molecules to the polymer particles through the aqueous phase. The choice of proper solutions of even the most hydrophobic organic molecules can provide the opportunity of their sorption into the polymer particles. Examples to support this idea were given by loading the extremely stiff fluorescent molecule, pentacene, and very hydrophobic dye, Sudan IV, into the polymer particles. Finally, the first application of RAFT at room temperature heterophase polymerization is reported. The results show that the RAFT process is effective at ambient temperature; however, the rate of fragmentation is significantly slower. The elevation of the reaction temperature in the presence of the RAFT agent resulted in faster polymerization and higher molar mass, suggesting that the fragmentation rate coefficient and its dependence on the temperature is responsible for the observed retardation. N2 - Um neue Materialien mit außergewöhnlichen Eigenschaften zu erstellen, muss man in der Lage sein, die Struktur der Moleküle zu kontrollieren, aus denen die Materialien bestehen. Für das Maßschneidern solcher neuer Eigenschaften besitzen Polymere ein großes Potenzial: Dies sind sehr lange Moleküle, die aus einer großen Zahl von kleineren Einheiten aufgebaut sind. Proteine und DNS sind Beispiele für natürliche Polymere; Plastik und Gummi sind Beispiele für künstliche Polymere. Letztere werden üblicherweise durch das Zusammenfügen einer Reihe von kleineren Molekülen, den Monomeren, hergestellt. Schon lange versuchen Wissenschaftler, die Anordnung, Anzahl und Art dieser Monomere zu kontrollieren, die sich in der Struktur der Polymermoleküle widerspiegeln. Die gebräuchlichste Methode zur kommerziellen Produktion von Polymeren ist die so genannte freie radikalische Polymerisation. Die Strukturkontrolle durch diese Methode ist jedoch relativ schwierig und wurde maßgeblich erst im letzten Jahrzehnt entwickelt. Trotz der Existenz einiger effektiver Kontrollmethoden ist ihre industrielle Anwendung bislang sehr beschränkt, weil sie nicht für die Emulsionspolymerisation verwendbar sind. Die Emulsionspolymerisation ist die gängigste Technik in der industriellen Produktion von Polymeren. Es handelt sich dabei um ein vergleichsweise umweltfreundliches Verfahren, denn es werden keine organischen Lösungsmittel verwendet. Stattdessen dient Wasser als Lösungsmittel, in dem die Polymere in Form von kleinen, fein verteilten Partikeln vorliegen. In der Natur kommt dieses Prinzip beispielsweise in Pflanzen bei der Bildung von Kautschuk - allgemein als Latex bezeichnet - vor. Schließlich ist die Emulsionspolymerisation einfach durchzuführen: Das Produkt ist in vielen Fällen gebrauchsfertig, und es gibt viele technische Vorteile im Vergleich zu anderen Herstellungsprozessen. Doch bevor die Probleme beim Einsatz von Kontrollmethoden in der Emulsionspolymerisation gelöst werden können, müssen erst ihre Ursachen geklärt werden. Dies ist eine unverzichtbare Vorraussetzung zum Übertragen von Forschungsergebnissen auf das tägliche Leben. Ziel dieser Arbeit ist die Untersuchung der Probleme, die für die kontrollierte radikalische Polymerisation in Emulsion von Bedeutung sind. Die wichtigste Fragestellung in der Emulsionspolymerisation zielt auf die Löslichkeit der Reaktionskomponenten in den verschiedenen Phasen, wie z.B. in Wasser oder in den Polymerpartikeln. Die Kontrollmethode der Wahl für diese Arbeit ist "Reversibler Additions-Fragmentierungs Transfer" (RAFT). Die RAFT-Methode ist die modernste Kontrollmethode, und sie ist für viele Reaktionsbedingungen und viele Arten von Monomeren anwendbar. T2 - Towards understanding RAFT aqueous heterophase polymerization KW - Heterophasenpolymerisation KW - Emulsion KW - RAFT KW - kontrollierte radikalische Polymerisation KW - RAFT KW - controlled radical polymerization Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5801 ER - TY - THES A1 - Mathieu-Gaedke, Maria T1 - Grafting-to and grafting-from proteins - synthesis and characterization of protein-polymer conjugates on the way to biohybrid membrane materials T1 - Grafting-to und Grafting-from - Synthese und Charakterisierung von Protein-Polymer-Konjugaten auf dem Weg zu biohybriden Membranen N2 - The incorporation of proteins in artificial materials such as membranes offers great opportunities to avail oneself the miscellaneous qualities of proteins and enzymes perfected by nature over millions of years. One possibility to leverage proteins is the modification with artificial polymers. To obtain such protein-polymer conjugates, either a polymer can be grown from the protein surface (grafting-from) or a pre-synthesized polymer attached to the protein (grafting-to). Both techniques were used to synthesize conjugates of different proteins with thermo-responsive polymers in this thesis. First, conjugates were analyzed by protein NMR spectroscopy. Typical characterization techniques for conjugates can verify the successful conjugation and give hints on the secondary structure of the protein. However, the 3-dimensional structure, being highly important for the protein function, cannot be probed by standard techniques. NMR spectroscopy is a unique method allowing to follow even small alterations in the protein structure. A mutant of the carbohydrate binding module 3b (CBM3bN126W) was used as model protein and functionalized with poly(N-isopropylacrylamide). Analysis of conjugates prepared by grafting-to or grafting-from revealed a strong impact of conjugation type on protein folding. Whereas conjugates prepared by grafting a pre-formed polymer to the protein resulted in complete preservation of protein folding, grafting the polymer from the protein surface led to (partial) disruption of the protein structure. Next, conjugates of bovine serum albumin (BSA) as cheap and easily accessible protein were synthesized with PNIPAm and different oligoethylene glycol (meth)acrylates. The obtained protein-polymer conjugates were analyzed by an in-line combination of size exclusion chromatography and multi-angle laser light scattering (SEC-MALS). This technique is particular advantageous to determine molar masses, as no external calibration of the system is needed. Different SEC column materials and operation conditions were tested to evaluate the applicability of this system to determine absolute molar masses and hydrodynamic properties of heterogeneous conjugates prepared by grafting-from and grafting-to. Hydrophobic and non-covalent interactions of conjugates lead to error-prone values not in accordance to expected molar masses based on conversions and extents of modifications. As alternative to this method, conjugates were analyzed by sedimentation velocity analytical ultracentrifugation (SV-AUC) to gain insights in the hydrodynamic properties and how they change after conjugation. Within a centrifugal field, a sample moves and fractionates according to the mass, density, and shape of its individual components. Conjugates of BSA with PNIPAm were analyzed below and above the cloud point temperature of the thermo-responsive polymer component. It was identified that the polymer characteristics were transferred to the conjugate molecule which than showed a decreased ideality – defined as increased deviation from a perfect sphere model – below and increased ideality above the cloud point temperature. This effect can be attributed to an arrangement of the polymer chain pointing towards the solvent (expanded state) or snuggling around the protein surface depending on the applied temperature. The last project dealt with the synthesis of ferric hydroxamate uptake protein component A (FhuA)-polymer conjugates as building blocks for novel membrane materials. The shape of FhuA can be described as barrel and removal of a cork domain inside the protein results in a passive channel aimed to be utilized as pores in the membrane system. The polymer matrix surrounding the membrane protein is composed of a thermo-responsive and a UV-crosslinkable part. Therefore, an external trigger for covalent immobilization of these building blocks in the membrane and switchability of the membrane between different states was incorporated. The overall performance of membranes prepared by a drying-mediated self-assembly approach was evaluated by permeability and size exclusion experiments. The obtained membranes displayed an insufficiency in interchain crosslinking and therefore a lack in performance. Furthermore, the aimed switch between a hydrophilic and hydrophobic state of the polymer matrix did not occur. Correspondingly, size exclusion experiments did not result in a retention of analytes larger than the pores defined by the dimension of the used FhuA variant. Overall, different paths to generate protein-polymer conjugates by either grafting-from or grafting-to the protein surface were presented paving the way to the generation of new hybrid materials. Different analytical methods were utilized to describe the folding and hydrodynamic properties of conjugates providing a deeper insight in the overall characteristics of these seminal building blocks. N2 - Der Einbau von Proteinen in künstliche Materialien wie zum Beispiel Membranen ist eine vielversprechende Möglichkeit sich die besonderen Eigenschaften dieser Biomakromoleküle zunutze zu machen. Eine Möglichkeit, solche Membranen herzustellen, ist die Nutzung von Protein-Polymer-Konjugaten als universelle Bausteine. Für die Synthese solcher Konjugate stehen zwei Ansätze zur Verfügung. Bei grafting-to wird ein endgruppenfunktionalisiertes Polymer an das Protein angebunden. Dagegen wird bei grafting-from das Protein in einem ersten Schritt mit Initiatoren funktionalisiert und in einem zweiten Schritt das Polymer ausgehend von diesen sogenannten Makroinitiatoren synthetisiert. Innerhalb der hier vorliegenden Dissertation wurden vier Hauptprojekte bearbeitet, die sich entweder mit der tiefergehenden Charakterisierung von Protein-Polymer-Konjugaten oder deren Nutzung als Bausteine für Biohybrid-Membranen beschäftigten. Im ersten Projekt wurde der Einfluss der Konjugation auf die Proteinstruktur mittels NMR-Spektroskopie untersucht. Viele Analysemethoden geben Aufschluss über die Erhaltung großer, lokal ausgebildeter Strukturelemente nach Modifizierung. Kleine strukturelle Änderungen bleiben dort meist unerkannt. NMR-Spektroskopie ist eine der wenigen Methoden, die auch solche kleinen Änderungen aufzeigen kann. Innerhalb dieser Dissertation konnte gezeigt werden, dass die Modifizierung von Proteinen mit Polymeren je nach Konjugationsmethode einen enormen Einfluss auf die Proteinstruktur hat. Während Konjugate, die durch grafting-to hergestellt wurden, nahezu keine strukturellen Änderungen aufwiesen, führte die Modifizierung mit Initiatoren bereits zu deutlichen Änderungen, die sich nach der Polymerisation verstärkten. Das zweite Projekt widmetete sich der Analyse der hydrodynamischen Eigenschaften und der absoluten Molmassenbestimmung von Konjugaten mittels einer Kombination aus Größenausschlusschromatographie und Mehrwinkellichtstreuung. Während der Chromatographie werden die Konjugate entsprechend ihrer Größe aufgetrennt und anschließend durch Lichtstreuung vermessen. Damit diese Vermessung zu realistischen Werten führt, muss die vorangehende Chromatographie gewisse Anforderungen erfüllen. Eine davon ist, dass die Probe die Säule rein entsprechend ihrer Größe passiert und keine anderen Wechselwirkungen auftreten. Leider konnte diese Anforderung unter den getesteten Bedingungen nicht erfüllt werden, sodass die erhaltenen hydrodynamischen Werte und Molmassen stark fehlerbehaftet waren. Als Alternative zu dieser Methode wurden im dritten Projekt Konjugate in einer analytischen Ultrazentrifuge untersucht. Im Zentrifugalfeld wird eine Probe entsprechend der Größe, Masse und Dichte der Einzelbestandteile getrennt und detektiert. Solche Messungen wurden an Konjugaten modifiziert mit einem temperaturschaltbaren Polymer durchgeführt. Bei Temperaturen unterhalb des Schaltpunkts des Polymers sedimentierten die Konjugate langsamer als oberhalb dieses Punkts. Da sich die Molmasse während des Prozesses nicht ändert, kann dieses Verhalten auf die Form des Konjugats und den Einfluss des Polymers zurückgeführt werden. Die Messungen werden so interpretiert, dass das Polymer unterhalb der Schalttemperatur vom Protein weg zeigt und wie eine Art Fallschirm fungiert. Oberhalb der Temperatur schmiegt es sich an das Protein, ähnlich einem Fallschirmspringer, der die Arme an den Körper zieht. Das letzte Projekt strebte die Immobilisierung von Membranproteinen als funktionelle Poren in Membranmaterialien an. Dazu wurden Membranprotein-Polymer-Konjugate mit einem thermoresponsiven, UV-verlinkbaren Polymer hergestellt, welches einerseits durch einen externen Auslöser für eine kovalente Immobilisierung der Bausteine in der Membran und andererseits durch einen zweiten Auslöser die Membraneigenschaften modulieren sollte. Die Performance der hergestellten Membranen wurde durch Permeabilitäts- und Größenausschlussexperimente bewertet. Allerdings fand der angestrebte Wechsel zwischen einem hydrophilen und einem hydrophoben Zustand der Polymermatrix unter den getesteten Bedingungen nicht statt. Dementsprechend führten Größenausschlussexperimente nicht zu einer Retention von Analyten, die theoretisch größer sind als die durch die Dimension der verwendeten FhuA-Variante definierten Poren. Insgesamt wurden verschiedene Wege zur Synthese von Protein-Polymer-Konjugaten durch grafting-from und grafting-to vorgestellt. Die entwickelten Methoden und gewonnenen Erkenntnisse sind ein wichtiger Schritt auf dem Weg zu neuen Hybridmaterialien. Verschiedene analytische Methoden wurden eingesetzt, um die Faltung und die hydrodynamischen Eigenschaften der Konjugate zu untersuchen, was einen tieferen Einblick in die allgemeinen Eigenschaften dieser zukunftsträchtigen Bausteine ermöglicht. KW - Protein-Polymer-Konjugat KW - Proteincharakterisierung KW - kontrollierte radikalische Polymerisationen KW - Transmembranprotein KW - Analytische Ultrazentrifugation KW - SEC-MALS KW - Protein-NMR-Spektroskopie KW - Biohybrid-Membran KW - protein-polymer conjugate KW - protein characterization KW - controlled radical polymerization KW - transmembrane protein KW - analytical ultracentrifugation KW - SEC-MALS KW - protein NMR spectroscopy KW - biohybrid membrane materials Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-542921 ER - TY - THES A1 - Charan, Himanshu T1 - Self assembled transmembrane protein polymer conjugates for the generation of nano thin membranes and micro compartments T1 - Selbstassemblierte Transmembranprotein-Polymer Konjugate für die Herstellung von nanodünnen Membranen und Mikrokompartimenten N2 - This project was focused on generating ultra thin stimuli responsive membranes with an embedded transmembrane protein to act as the pore. The membranes were formed by crosslinking of transmembrane protein polymer conjugates. The conjugates were self assembled on air water interface and the polymer chains crosslinked using a UV crosslinkable comonomer to engender the membrane. The protein used for the studies reported herein was one of the largest transmembrane channel proteins, ferric hydroxamate uptake protein component A (FhuA), found in the outer membrane of Escherichia coli (E. coli). The wild type protein and three genetic variants of FhuA were provided by the group of Prof. Schwaneberg in Aachen. The well known thermo responsive poly(N isopropylacrylamide) (PNIPAAm) and the pH and thermo responsive polymer poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) were conjugated to FhuA and the genetic variants via controlled radical polymerization (CRP) using grafting from technique. These polymers were chosen because they would provide stimuli handles in the resulting membranes. The reported polymerization was the first ever attempt to attach polymer chains onto a membrane protein using site specific modification. The conjugate synthesis was carried out in two steps – a) FhuA was first converted into a macroinitiator by covalently linking a water soluble functional CRP initiator to the lysine residues. b) Copper mediated CRP was then carried out in pure buffer conditions with and without sacrificial initiator to generate the conjugates. The challenge was carrying out the modifications on FhuA without denaturing it. FhuA, being a transmembrane protein, requires amphiphilic species to stabilize its highly hydrophobic transmembrane region. For the experiments reported in this thesis, the stabilizing agent was 2 methyl 2,4-pentanediol (MPD). Since the buffer containing MPD cannot be considered a purely aqueous system, and also because MPD might interfere with the polymerization procedure, the reaction conditions were first optimized using a model globular protein, bovine serum albumin (BSA). The optimum conditions were then used for the generation of conjugates with FhuA. The generated conjugates were shown to be highly interfacially active and this property was exploited to let them self assemble onto polar apolar interfaces. The emulsions stabilized by particles or conjugates are referred to as Pickering emulsions. Crosslinking conjugates with a UV crosslinkable co monomer afforded nano thin micro compartments. Interfacial self assembly at the air water interface and subsequent UV crosslinking also yielded nano thin, stimuli responsive membranes which were shown to be mechanically robust. Initial characterization of the flux and permeation of water through these membranes is also reported herein. The generated nano thin membranes with PNIPAAm showed reduced permeation at elevated temperatures owing to the resistance by the hydrophobic and thus water-impermeable polymer matrix, hence confirming the stimulus responsivity. Additionally, as a part of collaborative work with Dr. Changzhu Wu, TU Dresden, conjugates of three enzymes with current/potential industrial relevance (candida antarctica lipase B, benzaldehyde lyase and glucose oxidase) with stimuli responsive polymers were synthesized. This work aims at carrying out cascade reactions in the Pickering emulsions generated by self assembled enzyme polymer conjugate. N2 - Im Rahmen dieses Projekts wurden ultradünne Stimuli responsive Membranen hergestellt, in die ein Transmembranprotein als Pore eingebettet ist. Die Membranen wurden durch das Verlinken von Transmembranprotein-Polymer Konjugaten an Grenzflächen hergestellt. Dazu wurden Konjugate an der Luft-Wasser-Grenzfläche selbstassembliert und die Polymerketten unter Verwendung eines UV-vernetzbaren Comonomers vernetzt. Als Protein wurde einer der größten Transmembran-Proteinkanäle, welcher sich in der Natur in der äußeren Membran von Escherichia coli (E. coli) findet, verwendet, nämlich ferric hydroxamate uptake protein component A (FhuA). Das Wildtyp-Protein und drei genetische Varianten von FhuA wurden von der Gruppe von Prof. Schwaneberg in Aachen zur Verfügung gestellt. Das bekannte thermo responsive Poly(N-isopropylacrylamid) (PNIPAAm) und das pH- und thermo responsive Polymer Poly((2-dimethylamino) ethylmethacrylat) (PDMAEMA) wurden über kontrollierte radikalische Polymerisationen (CRP) via der grafting-from Technik an FhuA und die genetischen Varianten konjugiert. Diese responsiven Polymere wurden ausgewählt, weil die Eigenschaften der resultierenden Membranen folglich durch äußere Einflusse verändert werden können. Dabei handelt es sich um das erste Beispiel, Polymerketten von einem Membranprotein ortsspezifisch zu synthetisieren. Die Konjugatsynthese wurde in zwei Schritten durchgeführt - a) zuerst wurde ein FhuA Makroinitiator durch Anbinden funktioneller CRP Initiatoren an die Lysinreste des Proteins dargestellt. B) durch Kupfer-vermittelte CRP wurden dann in Pufferlösung sowohl mit als auch ohne Opferinitiator die Konjugate synthetisiert. Die Herausforderung bestand darin, FhuA zu modifizieren ohne das Protein dabei zu denaturieren. Als Transmembranprotein benötigt FhuA amphiphile Agentien, um seine hydrophobe Transmembran Region zu stabilisieren. Für die im Rahmen dieser Arbeit durchgeführten Experimente war das stabilisierende Agens 2-Methyl-2,4-pentandiol (MPD). Da der MPD-Puffer nicht als rein wässriges Medium betrachtet werden kann, und auch, weil MPD das Polymerisationsverfahren beeinflussen könnte, wurden die Reaktionsbedingungen zunächst unter Verwendung eines globulären Modellproteins, nämlich Rinderserumalbumin (BSA), optimiert. Die optimalen Bedingungen wurden dann für die Erzeugung von Konjugaten mit FhuA verwendet. Die Konjugate zeigten eine hohe Grenzflächenaktivität und diese Eigenschaft wurde für die Selbstassemblierung an polaren/apolaren Grenzflächen ausgenutzt. Wurden Emulsionen durch die Konjugate stabilisiert, so bezeichnet man dies als Pickering-Emulsionen. Das Vernetzen von Konjugaten mit einem UV-vernetzbaren Co-Monomer führt zu nano-dünnen Mikrokompartimenten. Die Selbstassemblierung an der Luft-Wasser-Grenzfläche und anschließende UV-Vernetzung ergaben nano-dünne, Stimuli-responsive Membranen, die sich als mechanisch robust erwiesen. Eine erste Charakterisierung des Flusses und der Permeation von Wasser durch die Membranen wird ebenfalls in dieser Arbeit beschrieben. Die erzeugten nano dünnen Membranen mit PNIPAAm zeigten eine verminderte Permeation bei erhöhten Temperaturen aufgrund der nun hydrophoben und damit wasserundurchlässigen Polymermatrix. Darüber hinaus wurden für eine Kooperation mit Dr. Changzhu Wu, TU Dresden, Konjugate von drei Enzymen mit industrieller Relevanz (Candida antarctica Lipase B, Benzaldehydlyase und Glucose-Oxidase) synthetisiert. Diese Arbeit zielt auf Kaskadenreaktionen in Pickering-Emulsionen, die durch selbstassemblierte Enzym-Polymer Konjugate katalysiert werden. KW - FhuA KW - transmembrane protein KW - protein-polymer conjugate KW - controlled radical polymerization KW - ultra-thin membrane KW - FhuA KW - Transmembranprotein KW - Protein-Polymer Konjugaten KW - kontrollierte radikalische Polymerisationen KW - ultradünne Membranen Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402060 SP - xii, 138 ER -