TY - THES A1 - Topaj, Dmitri T1 - Synchronization transitions in complex systems N2 - Gegenstand dieser Arbeit ist die Untersuchung generischer Synchronisierungsphänomene in interagierenden komplexen Systemen. Diese Phänomene werden u.a. in gekoppelten deterministischen chaotischen Systemen beobachtet. Bei sehr schwachen Interaktionen zwischen individuellen Systemen kann ein Übergang zum schwach kohärenten Verhalten der Systeme stattfinden. In gekoppelten zeitkontinuierlichen chaotischen Systemen manifestiert sich dieser Übergang durch den Effekt der Phasensynchronisierung, in gekoppelten chaotischen zeitdiskreten Systemen durch den Effekt eines nichtverschwindenden makroskopischen Feldes. Der Übergang zur Kohärenz in einer Kette lokal gekoppelter Oszillatoren, beschrieben durch Phasengleichungen, wird im Bezug auf die Symmetrien des Systems untersucht. Es wird gezeigt, daß die durch die Symmetrien verursachte Reversibilität des Systems nichttriviale topologische Eigenschaften der Trajektorien bedingt, so daß das als dissipativ konstruierte System in einem ganzen Parameterbereich quasi-Hamiltonische Züge aufweist, d.h. das Phasenvolumen ist im Schnitt erhalten, und die Lyapunov-Exponenten sind paarweise symmetrisch. Der Übergang zur Kohärenz in einem Ensemble global gekoppelter chaotischer Abbildungen wird durch den Verlust der Stabilität des entkoppelten Zustandes beschrieben. Die entwickelte Methode besteht darin, die Selbstkonsistenz des makroskopischen Feldes aufzuheben, und das Ensemble in Analogie mit einem Verstärkerschaltkreis mit Rückkopplung durch eine komplexe lineare Übertragungssfunktion zu charakterisieren. Diese Theorie wird anschließend für einige theoretisch interessanten Fälle verallgemeinert. N2 - Subject of this work is the investigation of generic synchronization phenomena in interacting complex systems. These phenomena are observed, among all, in coupled deterministic chaotic systems. At very weak interactions between individual systems a transition to a weakly coherent behavior of the systems can take place. In coupled continuous time chaotic systems this transition manifests itself with the effect of phase synchronization, in coupled chaotic discrete time systems with the effect of non-vanishing macroscopic mean field. Transition to coherence in a chain of locally coupled oscillators described with phase equations is investigated with respect to the symmetries in the system. It is shown that the reversibility of the system caused by these symmetries results to non-trivial topological properties of trajectories so that the system constructed to be dissipative reveals in a whole parameter range quasi-Hamiltonian features, i.e. the phase volume is conserved on average and Lyapunov exponents come in symmetric pairs. Transition to coherence in an ensemble of globally coupled chaotic maps is described with the loss of stability of the disordered state. The method is to break the self-consistensy of the macroscopic field and to characterize the ensemble in analogy to an amplifier circuit with feedback with a complex linear transfer function. This theory is then generalized for several cases of theoretic interest. KW - Synchronisierung KW - komplex KW - System KW - komplexe Systeme KW - gekoppelt KW - chaotisch KW - Chaos KW - Interaktion KW - Übergang KW - P hasensynchronisierung KW - Phase KW - Feld KW - Effekt KW - synchronization KW - complex KW - system KW - complex systems KW - coupled KW - chaotic KW - chaos KW - interaction KW - transition KW - phase KW - phase synchronization KW - field KW - meanfield KW - o Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000367 ER - TY - THES A1 - Pereira da Silva, Tiago T1 - Synchronization in active networks T1 - Synchronisation in Aktiven Netzwerken N2 - In nature one commonly finds interacting complex oscillators which by the coupling scheme form small and large networks, e.g. neural networks. Surprisingly, the oscillators can synchronize, still preserving the complex behavior. Synchronization is a fundamental phenomenon in coupled nonlinear oscillators. Synchronization can be enhanced at different levels, that is, the constraints on which the synchronization appears. Those can be in the trajectory amplitude, requiring the amplitudes of both oscillators to be equal, giving place to complete synchronization. Conversely, the constraint could also be in a function of the trajectory, e.g. the phase, giving place to phase synchronization (PS). In this case, one requires the phase difference between both oscillators to be finite for all times, while the trajectory amplitude may be uncorrelated. The study of PS has shown its relevance to important technological problems, e.g. communication, collective behavior in neural networks, pattern formation, Parkinson disease, epilepsy, as well as behavioral activities. It has been reported that it mediates processes of information transmission and collective behavior in neural and active networks and communication processes in the Human brain. In this work, we have pursed a general way to analyze the onset of PS in small and large networks. Firstly, we have analyzed many phase coordinates for compact attractors. We have shown that for a broad class of attractors the PS phenomenon is invariant under the phase definition. Our method enables to state about the existence of phase synchronization in coupled chaotic oscillators without having to measure the phase. This is done by observing the oscillators at special times, and analyzing whether this set of points is localized. We have show that this approach is fruitful to analyze the onset of phase synchronization in chaotic attractors whose phases are not well defined, as well as, in networks of non-identical spiking/bursting neurons connected by chemical synapses. Moreover, we have also related the synchronization and the information transmission through the conditional observations. In particular, we have found that inside a network clusters may appear. These can be used to transmit more than one information, which provides a multi-processing of information. Furthermore, These clusters provide a multichannel communication, that is, one can integrate a large number of neurons into a single communication system, and information can arrive simultaneously at different places of the network. N2 - In oder Natur sind interagierende komplexe Oszillatoren, die Netzwerke bilden, häufig anzutreffen. Erstaunlich ist, dass sich diese Oszillatoren synchronisieren, ohne ihr eigenes komplexes Verhalten zu verlieren. Diese Fähigkeit zur Synchronisation ist eine wesentliche Eigenschaft von gekoppelten nichtlinearen Oszillatoren. Die Fähigkeit zur Synchronisation kann auf unterschiedliche Weise durch Eingriff in die Bedingungen, die zur Synchronisation führen, verbessert werden. Es kann sowohl eine Synchronisation der Amplituden als auch der Phasen stattfinden bzw. erzwungen werden. Insbesondere Phase Synchronisation über die Phase (PS) hat sich in den wichtigen Bereichen der Technik, Kommunikation, Soziologie und Neurologie als Modellierungsgrundlage bewiesen. Bekannte Beispiele aus der Neurologie sind Parkinson und Epilepsie. In der vorliegenden Arbeit haben wir nach einem verallgemeinerten Weg gesucht, das Phänomen der PS in Netzwerken analysieren zu können. Zuerst haben wir viele Phasendefinitionen für einfache Attraktoren (Oszillatoren mit definierten Phaseneigenschaften) untersucht und festgestellt, dass das Phänomen der PS unabhängig von der Definition der Phase ist. Als nächstes haben wir begonnen, die maximale Abweichungen abzuschätzen, bei der die Synchronisation für bei einer gegebene Phase nicht verlorengeht. Abschließend haben wir eine Methode entwickelt, mittels derer Synchronisation in chaotischen System festgestellt werden kann, ohne die Phase selbst messen zu müssen. Dazu wird zu geeigneten Zeitpunkten der Zustandsraum untersucht. Wir können zeigen, dass mittels dieser Methode in chaotisch Systemen sowohl die Grössenordnung der Synchronisation als auch die Bereiche, in denen Synchronisation stattfindet, untersucht werden können. Dabei kann festgestellt werden, dass der Grad der Synchronisation mit der Menge an Information in Beziehung steht, die an verschieden Stellen eines Netzwerks gleichzeitig übermittelt wird. Dies kann zur Modellierung der Informationsübertragung über die Synapsen im Gehirn verwendet werden. KW - Synchronisation KW - Netzwerk KW - Phase KW - Information KW - Synchronization KW - Networks KW - Phase KW - Information Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14347 ER - TY - THES A1 - Kralemann, Björn Christian T1 - Die Rekonstruktion invarianter Phasenmodelle aus Daten T1 - Reconstructing invariant phase models from data N2 - Ziel dieser Arbeit ist die Überwindung einer Differenz, die zwischen der Theorie der Phase bzw. der Phasendynamik und ihrer Anwendung in der Zeitreihenanalyse besteht: Während die theoretische Phase eindeutig bestimmt und invariant unter Koordinatentransformationen bzw. gegenüber der jeweils gewählten Observable ist, führen die Standardmethoden zur Abschätzung der Phase aus gegebenen Zeitreihen zu Resultaten, die einerseits von den gewählten Observablen abhängen und so andererseits das jeweilige System keineswegs in eindeutiger und invarianter Weise beschreiben. Um diese Differenz deutlich zu machen, wird die terminologische Unterscheidung von Phase und Protophase eingeführt: Der Terminus Phase wird nur für Variablen verwendet, die dem theoretischen Konzept der Phase entsprechen und daher das jeweilige System in invarianter Weise charakterisieren, während die observablen-abhängigen Abschätzungen der Phase aus Zeitreihen als Protophasen bezeichnet werden. Der zentrale Gegenstand dieser Arbeit ist die Entwicklung einer deterministischen Transformation, die von jeder Protophase eines selbsterhaltenden Oszillators zur eindeutig bestimmten Phase führt. Dies ermöglicht dann die invariante Beschreibung gekoppelter Oszillatoren und ihrer Wechselwirkung. Die Anwendung der Transformation bzw. ihr Effekt wird sowohl an numerischen Beispielen demonstriert - insbesondere wird die Phasentransformation in einem Beispiel auf den Fall von drei gekoppelten Oszillatoren erweitert - als auch an multivariaten Messungen des EKGs, des Pulses und der Atmung, aus denen Phasenmodelle der kardiorespiratorischen Wechselwirkung rekonstruiert werden. Abschließend wird die Phasentransformation für autonome Oszillatoren auf den Fall einer nicht vernachlässigbaren Amplitudenabhängigkeit der Protophase erweitert, was beispielsweise die numerischen Bestimmung der Isochronen des chaotischen Rössler Systems ermöglicht. N2 - The aim of this work is to bridge the gap between the theoretical description of the phase dynamics of coupled oscillators and the application of the theory to model reconstruction from time series analysis. In the theory, the phase of a self-sustained oscillator is defined in an unambiguous way, whereas the standard techniques used to estimate phases from given time series provide observabledependent results, so that generally these estimates deviate from the true phase. To stress this crucial issue, we term the observable-dependent phase-like variables as protophases. The main goal of this work is to develop a deterministic transformation from arbitrary protophases to the true, unique phase of the selfsustained oscillator. This approach allows us to obtain an invariant description of coupled oscillators and of their interaction. The application of the transformation and its efficiency are illustrated by means of numerical examples, as well as by the reconstruction of phase models of the cardiorespiratory interaction from multivariate time series of ECG, pulse and respiration. Next, the transformation from protophases to phases is extended for the case of three coupled oscillators. Finally, we go beyond the phase approximation and extend the phase transformation for autonomous oscillators to the case when the amplitude dynamics cannot be neglected. This technique for example allows us to compute numerically the isochrones of the chaotic Roessler system. KW - nichtlineare Dynamik KW - selbsterhaltende Oszillatoren KW - Phase KW - Protophase KW - Invarianz KW - nonlinear Dynamics KW - self-sustained Oscillators KW - Phase KW - Protophase KW - Invariance Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45057 ER -