TY - JOUR A1 - Şener, Ulaş T1 - Rodrik, Dani (2015): Economics Rules: The Rights and Wrongs of the Dismal Science / rezensiert von Ulaş Şener JF - European journal of economics and economic policies : intervention ; EJEEP Y1 - 2017 U6 - https://doi.org/10.4337/ejeep.2017.03.08 SN - 2052-7764 SN - 2195-3376 VL - 14 SP - 375 EP - 377 PB - Elgar CY - Cheltenham ER - TY - JOUR A1 - Zupok, Arkadiusz A1 - Iobbi-Nivol, Chantal A1 - Mejean, Vincent A1 - Leimkühler, Silke T1 - The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria JF - Metallomics : integrated biometal science N2 - Bacterial molybdoenzymes are key enzymes involved in the global sulphur, nitrogen and carbon cycles. These enzymes require the insertion of the molybdenum cofactor (Moco) into their active sites and are able to catalyse a large range of redox-reactions. Escherichia coli harbours nineteen different molybdoenzymes that require a tight regulation of their synthesis according to substrate availability, oxygen availability and the cellular concentration of molybdenum and iron. The synthesis and assembly of active molybdoenzymes are regulated at the level of transcription of the structural genes and of translation in addition to the genes involved in Moco biosynthesis. The action of global transcriptional regulators like FNR, NarXL/QP, Fur and ArcA and their roles on the expression of these genes is described in detail. In this review we focus on what is known about the molybdenum- and iron-dependent regulation of molybdoenzyme and Moco biosynthesis genes in the model organism E. coli. The gene regulation in E. coli is compared to two other well studied model organisms Rhodobacter capsulatus and Shewanella oneidensis. Y1 - 2019 U6 - https://doi.org/10.1039/c9mt00186g SN - 1756-5901 SN - 1756-591X VL - 11 IS - 10 SP - 1602 EP - 1624 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zouhar, Jan A1 - Sauer, Michael T1 - Helping hands for budding prospects: ENTH/ANTH/VHS accessory proteins in endocytosis, vacuolar transport, and secretion JF - The plant cell N2 - Coated vesicles provide a major mechanism for the transport of proteins through the endomembrane system of plants. Transport between the endoplasmic reticulum and the Golgi involves vesicles with COPI and COPII coats, whereas clathrin is the predominant coat in endocytosis and post-Golgi trafficking. Sorting of cargo, coat assembly, budding, and fission are all complex and tightly regulated processes that involve many proteins. The mechanisms and responsible factors are largely conserved in eukaryotes, and increasing organismal complexity tends to be associated with a greater numbers of individual family members. Among the key factors is the class of ENTH/ANTH/VHS domain-containing proteins, which link membrane subdomains, clathrin, and other adapter proteins involved in early steps of clathrin coated vesicle formation. More than 30 Arabidopsis thaliana proteins contain this domain, but their generally low sequence conservation has made functional classification difficult. Reports from the last two years have greatly expanded our knowledge of these proteins and suggest that ENTH/ANTH/VHS domain proteins are involved in various instances of clathrin-related endomembrane trafficking in plants. This review aims to summarize these new findings and discuss the broader context of clathrin-dependent plant vesicular transport. Y1 - 2014 U6 - https://doi.org/10.1105/tpc.114.131680 SN - 1040-4651 SN - 1532-298X VL - 26 IS - 11 SP - 4232 EP - 4244 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Zhang, Gong A1 - Ignatova, Zoya T1 - Folding at the birth of the nascent chain: coordinating translation with co-translational folding JF - Current opinion in structural biology : review of all advances ; evaluation of key references ; comprehensive listing of papers N2 - In the living cells, the folding of many proteins is largely believed to begin co-translationally, during their biosynthesis at the ribosomes. In the ribosomal tunnel, the nascent peptide may establish local interactions and stabilize alpha-helical structures. Long-range contacts are more likely outside the ribosomes after release of larger segments of the nascent chain. Examples suggest that domains can attain native-like structure on the ribosome with and without population of folding intermediates. The co-translational folding is limited by the speed of the gradual extrusion of the nascent peptide which imposes conformational restraints on its folding landscape. Recent experimental and in silico modeling studies indicate that translation kinetics fine-tunes co-translational folding by providing a time delay for sequential folding of distinct portions of the nascent chain. Y1 - 2011 U6 - https://doi.org/10.1016/j.sbi.2010.10.008 SN - 0959-440X VL - 21 IS - 1 SP - 25 EP - 31 PB - Elsevier CY - London ER - TY - JOUR A1 - Zerbian, Sabine T1 - Variation in the grammar of black south African English JF - Southern African linguistics and applied language studies Y1 - 2012 U6 - https://doi.org/10.2989/16073614.2012.693721 SN - 1607-3614 VL - 30 IS - 1 SP - 131 EP - 135 PB - NISC CY - Grahamstown ER - TY - JOUR A1 - Zakarias, Lilla A1 - Kelly, Helen A1 - Sails, Christos A1 - Code, Chris T1 - The methodological quality of short-term/working memory treatments in poststroke aphasia BT - a systematic review JF - Journal of speech, language, and hearing research N2 - Purpose: The aims of this systematic review are to provide a critical overview of short-term memory (STM) and working memory (WM) treatments in stroke aphasia and to systematically evaluate the internal and external validity of STM/WM treatments. Method: A systematic search was conducted in February 2014 and then updated in December 2016 using 13 electronic databases. We provided descriptive characteristics of the included studies and assessed their methodological quality using the Risk of Bias in N-of-1 Trials quantitative scale (Tate et al., 2015), which was completed by 2 independent raters. Results: The systematic search and inclusion/exclusion procedure yielded 17 single-case or case-series studies with 37 participants for inclusion. Nine studies targeted auditory STM consisting of repetition and/or recognition tasks, whereas 8 targeted attention and WM, such as attention process training including n-back tasks with shapes and clock faces as well as mental math tasks. In terms of their methodological quality, quality scores on the Risk of Bias in N-of-1 Trials scale ranged from 4 to 17 (M = 9.5) on a 0-30 scale, indicating a high risk of bias in the reviewed studies. Effects of treatment were most frequently assessed on STM, WM, and spoken language comprehension. Transfer effects on communication and memory in activities of daily living were tested in only 5 studies. Conclusions: Methodological limitations of the reviewed studies make it difficult, at present, to draw firm conclusions about the effects of STM/WM treatments in poststroke aphasia. Further studies with more rigorous methodology and stronger experimental control are needed to determine the beneficial effects of this type of intervention. To understand the underlying mechanisms of STM/WM treatment effects and how they relate to language functioning, a careful choice of outcome measures and specific hypotheses about potential improvements on these measures are required. Future studies need to include outcome measures of memory functioning in everyday life and psychosocial functioning more generally to demonstrate the ecological validity of STM and WM treatments. Y1 - 2019 U6 - https://doi.org/10.1044/2018_JSLHR-L-18-0057 SN - 1092-4388 SN - 1558-9102 VL - 62 IS - 6 SP - 1979 EP - 2001 PB - American Speech-Language-Hearing Assoc. CY - Rockville ER - TY - JOUR A1 - Yokoyama, Kenichi A1 - Leimkühler, Silke T1 - The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria JF - Biochimica et biophysica acta : Molecular cell research N2 - The biosynthesis of the molybdenum cofactor (Moco) has been intensively studied, in addition to its insertion into molybdoenzymes. In particular, a link between the assembly of molybdoenzymes and the biosynthesis of FeS clusters has been identified in the recent years: 1) the synthesis of the first intermediate in Moco biosynthesis requires an FeS-cluster containing protein, 2) the sulfurtransferase for the dithiolene group in Moco is also involved in the synthesis of FeS clusters, thiamin and thiolated tRNAs, 3) the addition of a sulfido-ligand to the molybdenum atom in the active site additionally involves a sulfurtransferase, and 4) most molybdoenzymes in bacteria require FeS clusters as redox active cofactors. In this review we will focus on the biosynthesis of the molybdenum cofactor in bacteria, its modification and insertion into molybdoenzymes, with an emphasis to its link to FeS cluster biosynthesis and sulfur transfer. (C) 2014 Elsevier B.V. All rights reserved. KW - Molybdenum-iron-iron-sulfur cluster KW - Molybdenum cofactor KW - tRNA KW - Sulfur transfer KW - L-Cysteine desulfurase Y1 - 2015 U6 - https://doi.org/10.1016/j.bbamcr.2014.09.021 SN - 0167-4889 SN - 0006-3002 VL - 1853 IS - 6 SP - 1335 EP - 1349 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yarman, Aysu A1 - Scheller, Frieder W. T1 - How reliable is the electrochemical readout of MIP sensors? JF - Sensors N2 - Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration. KW - molecularly imprinted polymers KW - electropolymerization KW - direct electron KW - transfer KW - catalysis KW - redox marker KW - gate effect Y1 - 2020 U6 - https://doi.org/10.3390/s20092677 SN - 1424-8220 VL - 20 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Yarman, Aysu A1 - Kurbanoglu, Sevinc A1 - Jetzschmann, Katharina J. A1 - Ozkan, Sibel A. A1 - Wollenberger, Ulla A1 - Scheller, Frieder W. T1 - Electrochemical MIP-Sensors for Drugs JF - Current Medicinal Chemistry N2 - In order to replace bio-macromolecules by stable synthetic materials in separation techniques and bioanalysis biomimetic receptors and catalysts have been developed: Functional monomers are polymerized together with the target analyte and after template removal cavities are formed in the "molecularly imprinted polymer" (MIP) which resemble the active sites of antibodies and enzymes. Starting almost 80 years ago, around 1,100 papers on MIPs were published in 2016. Electropolymerization allows to deposit MIPs directly on voltammetric electrodes or chips for quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). For the readout of MIPs for drugs amperometry, differential pulse voltammetry (DPV) and impedance spectroscopy (EIS) offer higher sensitivity as compared with QCM or SPR. Application of simple electrochemical devices allows both the reproducible preparation of MIP sensors, but also the sensitive signal generation. Electrochemical MIP-sensors for the whole arsenal of drugs, e.g. the most frequently used analgesics, antibiotics and anticancer drugs have been presented in literature and tested under laboratory conditions. These biomimetic sensors typically have measuring ranges covering the lower nano-up to millimolar concentration range and they are stable under extreme pH and in organic solvents like nonaqueous extracts. KW - Biomimetic sensors KW - molecularly imprinted polymers KW - drug sensors KW - drug imprinting KW - electropolymerization KW - electrochemical sensors Y1 - 2018 U6 - https://doi.org/10.2174/0929867324666171005103712 SN - 0929-8673 SN - 1875-533X VL - 25 IS - 33 SP - 4007 EP - 4019 PB - Bentham Science Publishers LTD CY - Sharjah ER - TY - JOUR A1 - Yarman, Aysu A1 - Jetzschmann, Katharina J. A1 - Neumann, Bettina A1 - Zhang, Xiaorong A1 - Wollenberger, Ulla A1 - Cordin, Aude A1 - Haupt, Karsten A1 - Scheller, Frieder W. T1 - Enzymes as Tools in MIP-Sensors JF - Chemosensors N2 - Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants. Enzymes are useful tools for the preparation of MIPs for both low and high-molecular weight targets: As a green alternative to the well-established methods of chemical polymerization, enzyme-initiated polymerization has been introduced and the removal of protein templates by proteases has been successfully applied. Furthermore, MIPs have been coupled with enzymes in order to enhance the analytical performance of biomimetic sensors: Enzymes have been used in MIP-sensors as tracers for the generation and amplification of the measuring signal. In addition, enzymatic pretreatment of an analyte can extend the analyte spectrum and eliminate interferences. KW - enzymatic MIP synthesis KW - template digestion KW - enzyme tracer KW - enzymatic analyte conversion KW - molecularly imprinted polymers Y1 - 2017 U6 - https://doi.org/10.3390/chemosensors5020011 SN - 2227-9040 VL - 5 PB - MDPI CY - Basel ER -