TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz A1 - Koesterke, Lars T1 - Wolf-Rayet star parameters from spectral analyses N2 - The Potsdam Non-LTE code for expanding atmospheres, which accounts for clumping and iron-line blanketing, has been used to establish a grid of model atmospheres for WC stars. A parameter degeneracy is discovered for early-type WC models which do not depend on the "stellar temperature". 15 galactic WC4-7 stars are analyzed, showing a very uniform carbon abundance (He:C=55:40) with only few exceptions. Y1 - 2003 SN - 1-58381-133-8 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz A1 - Koesterke, Lars T1 - WR Central Stars N2 - Wolf-Rayet type central stars have been analyzed with adequate model atmospheres. The obtained stellar parameters and chemical abundances allow for a discussion of their evolutionary origin. Y1 - 2003 SN - 1-583-81148-6 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - Grids of model spectra for WN stars, ready for use N2 - Grids of model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN subclass) are presented. The calculations account for the expansion of the atmosphere, non-LTE, clumping, and line blanketing from iron-group elements. Observed spectra of single Galactic WN stars can in general be reproduced consistently by this generation of models. The parameters of the presented model grids cover the whole relevant range of stellar temperatures and mass-loss rates. We point out that there is a degeneracy of parameters for very thick winds; their spectra tend to depend only on the ratio $L/{dot M}^{4/3}$. Abundances of the calculated grids are for Galactic WN stars without hydrogen and with 20% hydrogen (by mass), respectively. Model spectra and fluxes are available via internet (http://www.astro.physik.uni- potsdam.de/PoWR.html). Y1 - 2004 SN - 0004-6361 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - A temperature correction method for expanding atmospheres Y1 - 2004 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - The surface composition of hydrogen-deficient Post-AGB stars N2 - Most Central Stars of Planetary Nebulae exhibit a spectrum of a hydrogen-rich hot star with little or no stellar wind. About 20 % of the CSPN, however, show entirely different spectra dominated by bright and broad emission lines of carbon, oxygen and helium, resembling the so-called Wolf-Rayet (WR) spectral class originally established for massive, Pop. I stars. These spectra indicate a hydrogen-deficient surface composition and, at the same time, strong mass-loss. As the WR spectra are formed entirely in a dense stellar wind, their spectral analysis requires adequate modelling. Corresponding Non-LTE model atmospheres have been developed in the last decade and became more and more sophisticated. They have been applied yet for analyzing almost all available WR-type CSPN spectra, establishing the stellar parameters. The obtained surface abundances are not understandable in terms of "classical" evolutionary calculations, but agree in principle with the advanced models for AGB evolution which account consistently for diffusive mixing and nuclear burning. The underabundance of iron, which we established in a recent study of a WC-type central star (LMC-SMP 61), gives indirect evidence that neutron-capture synthesis has converted Fe into s-process elements. Y1 - 2003 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - The surface composition of hydrogen-deficient Post-AGB stars Y1 - 2003 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, G. A1 - Liermann, A. A1 - Hainich, Rainer A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Ramachandran, Varsha A1 - Todt, Helge Tobias A1 - Oskinova, Lidia M. T1 - The Galactic WN stars revisited BT - Impact of Gaia distances on fundamental stellar parameters JF - Astronomy and astrophysics : an international weekly journal N2 - Comprehensive spectral analyses of the Galactic Wolf-Rayet stars of the nitrogen sequence (i.e. the WN subclass) have been performed in a previous paper. However, the distances of these objects were poorly known. Distances have a direct impact on the "absolute" parameters, such as luminosities and mass-loss rates. The recent Gaia Data Release (DR2) of trigonometric parallaxes includes nearly all WN stars of our Galactic sample. In the present paper, we apply the new distances to the previously analyzed Galactic WN stars and rescale the results accordingly. On this basis, we present a revised catalog of 55 Galactic WN stars with their stellar and wind parameters. The correlations between mass-loss rate and luminosity show a large scatter, for the hydrogen-free WN stars as well as for those with detectable hydrogen. The slopes of the log L - log M correlations are shallower than found previously. The empirical Hertzsprung-Russell diagram (HRD) still shows the previously established dichotomy between the hydrogen-free early WN subtypes that are located on the hot side of the zero-age main sequence (ZAMS), and the late WN subtypes, which show hydrogen and reside mostly at cooler temperatures than the ZAMS (with few exceptions). However, with the new distances, the distribution of stellar luminosities became more continuous than obtained previously. The hydrogen-showing stars of late WN subtype are still found to be typically more luminous than the hydrogen-free early subtypes, but there is a range of luminosities where both subclasses overlap. The empirical HRD of the Galactic single WN stars is compared with recent evolutionary tracks. Neither these single-star evolutionary models nor binary scenarios can provide a fully satisfactory explanation for the parameters of these objects and their location in the HRD. KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - stars: atmospheres KW - stars: evolution KW - stars: distances Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834850 SN - 1432-0746 VL - 625 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Graefener, G. A1 - Liermann, A. T1 - The galactic WN stars - Spectral analyses with line-blanketed model atmospheres versus stellar evolution models with and without rotation JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Very massive stars pass through the Wolf-Rayet (WR) stage before they finally explode. Details of their evolution have not yet been safely established, and their physics are not well understood. Their spectral analysis requires adequate model atmospheres, which have been developed step by step during the past decades and account in their recent version for line blanketing by the millions of lines from iron and iron-group elements. However, only very few WN stars have been re-analyzed by means of line-blanketed models yet. Aims. The quantitative spectral analysis of a large sample of Galactic WN stars with the most advanced generation of model atmospheres should provide an empirical basis for various studies about the origin, evolution, and physics of the Wolf-Rayet stars and their powerful winds. Methods. We analyze a large sample of Galactic WN stars by means of the Potsdam Wolf-Rayet (PoWR) model atmospheres, which account for iron line blanketing and clumping. The results are compared with a synthetic population, generated from the Geneva tracks for massive star evolution. Results. We obtain a homogeneous set of stellar and atmospheric parameters for the GalacticWN stars, partly revising earlier results. Conclusions. Comparing the results of our spectral analyses of the Galactic WN stars with the predictions of the Geneva evolutionary calculations, we conclude that there is rough qualitative agreement. However, the quantitative discrepancies are still severe, and there is no preference for the tracks that account for the effects of rotation. It seems that the evolution of massive stars is still not satisfactorily understood. KW - stars : mass-loss KW - stars : winds, outflows KW - stars : Wolf-Rayet KW - stars : atmospheres KW - stars : early-type KW - stars : evolution Y1 - 2006 U6 - https://doi.org/10.1051/0004-6361:20065052 SN - 0004-6361 VL - 457 IS - 3 SP - 1015 EP - 1031 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Brown, John C. A1 - Feldmeier, Achim A1 - Oskinova, Lidia M. T1 - On the wavelength drift of spectral features from structured hot star winds N2 - Spectral lines formed in stellar winds from OB stars are observed to exhibit profile variations. Discrete Absorption Components (DACs) show a remarkably slow wavelength drift with time. In a straightforward interpretation, this is in sharp contradiction to the steep velocity law predicted by the radiation-driven wind theory, and by semi- empirical profile fitting. In the present paper we re-discuss the interpretation of the drift rate. We show that the Co- rotating Interaction Region (CIR) model for the formation of DACs does not explain their slow drift rate as a consequence of rotation. On the contrary, the apparent acceleration of a spectral CIR feature is even higher than for the corresponding kinematical model without rotation. However, the observations can be understood by distinguishing between the velocity field of the matter flow, and the velocity law for the motion of the patterns in which the DAC features are formed. If the latter propagate upstream against the matter flow, the resulting wavelength drift mimics a much slower acceleration although the matter is moving fast. Additional to the DACs, a second type of recurrent structures is present in observed OB star spectra, the so-called modulations. In contrast to the DACs, these structures show a steep acceleration compatible with the theoretically predicted velocity law. We see only two possible consistent scenarios. Either, the wind is accelerated fast, and the modulations are formed in advected structures, while the DACs come from structures which are propagating upstream. Or, alternatively, steep and shallow velocity laws may co-exist at the same time in different spatial regions or directions of the wind. Y1 - 2001 ER - TY - JOUR A1 - Hamann, Wolf-Rainer T1 - Basic ali in moving atmospheres N2 - The non-LTE radiative transfer problem requires the consistent solution of two sets of equations: the radiative transfer equations, which couple the spatial points, and the equations of the statistical equilibrium, which couple the frequencies. The "Accelerated Lambda Iteration" (ALI) method allows for an iterative scheme, in which both sets of equations are solved in turn. For moving atmospheres the radiative transfer is preferably formulated in the co-moving frame-of-reference, which leads to a partial differential equation. "Classical" numerical solution methods are based on differencing schemes. For better numerical stability, we prefer "short characteristics" integration methods. Iron line blanketing is accounted for by means of the "superlevel" concept. In contrast to static atmospheres, the frequencies can not be re-ordered in the moving case because of the frequency coupling from Doppler shifts. One of our future aims is the coupling of elaborated radiative transfer calculations with the hydrodynamical equations in order to understand the driving of strong stellar winds, especially from Wolf-Rayet stars. Y1 - 2003 SN - 1-5838-1131-1 ER -