TY - JOUR A1 - Todt, Helge Tobias A1 - Sander, Angelika A1 - Hainich, Rainer A1 - Hamann, Wolf-Rainer A1 - Quade, Markus A1 - Shenar, Tomer T1 - Potsdam Wolf-Rayet model atmosphere grids for WN stars JF - Astronomy and astrophysics : an international weekly journal N2 - We present new grids of Potsdam Wolf-Rayet (PoWR) model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN stars). The models have been calculated with the latest version of the PoWR stellar atmosphere code for spherical stellar winds. The WN model atmospheres include the non-LTE solutions of the statistical equations for complex model atoms, as well as the radiative transfer equation in the co-moving frame. Iron-line blanketing is treated with the help of the superlevel approach, while wind inhomogeneities are taken into account via optically thin clumps. Three of our model grids are appropriate for Galactic metallicity. The hydrogen mass fraction of these grids is 50%, 20%, and 0%, thus also covering the hydrogen-rich late-type WR stars that have been discovered in recent years. Three grids are adequate for LMC WN stars and have hydrogen fractions of 40%, 20%, and 0%. Recently, additional grids with SMC metallicity and with 60%, 40%, 20%, and 0% hydrogen have been added. We provide contour plots of the equivalent widths of spectral lines that are usually used for classification and diagnostics. KW - stars: evolution KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - stars: atmospheres KW - stars: massive Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201526253 SN - 0004-6361 SN - 1432-0746 VL - 579 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Todt, Helge Tobias A1 - Peña, Miriam A1 - Zühlke, Julia A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - Weak emission line central stars of planetary nebulae T2 - Planetary Nebulae: an Eye to the Future N2 - To understand the evolution and morphology of planetary nebulae, a detailed knowledge of their central stars is required. Central stars that exhibit emission lines in their spectra, indicating stellar mass-loss allow to study the evolution of planetary nebulae in action. Emission line central stars constitute about 10 % of all central stars. Half of them are practically hydrogen-free Wolf-Rayet type central stars of the carbon sequence, [WC], that show strong emission lines of carbon and oxygen in their spectra. In this contribution we address the weak emission-lines central stars (wels). These stars are poorly analyzed and their hydrogen content is mostly unknown. We obtained optical spectra, that include the important Balmer lines of hydrogen, for four weak emission line central stars. We present the results of our analysis, provide spectral classification and discuss possible explanations for their formation and evolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 462 KW - stars: AGB and post-AGB KW - stars: Wolf-Rayet KW - stars: abundances Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413775 ER - TY - JOUR A1 - Todt, Helge Tobias A1 - Pena, Maria A. A1 - Hamann, Wolf-Rainer A1 - Gräfener, Götz T1 - The central star of the planetary nebula PB8 : a Wolf-Rayet-type wind of an unusual WN/WC chemical composition N2 - A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. As a rule, these CSPNe exhibit a chemical composition of helium, carbon, and oxygen with the majority showing Wolf-Rayet-like emission line spectra. These stars are classified as CSPNe of a spectral type [WC]. We perform a spectral analysis of CSPN PB 8 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. The source PB8 displays wind-broadened emission lines from strong mass loss. Most strikingly, we find that its surface composition is hydrogen-deficient, but not carbon-rich. With mass fractions of 55% helium, 40% hydrogen, 1.3% carbon, 2% nitrogen, and 1.3% oxygen, it differs greatly from the 30-50% of carbon which are typically seen in [WC]-type central stars. The atmospheric mixture in PB8 has an analogy in the WN/WC transition type among the massive Wolf-Rayet stars. Therefore we suggest to introduce a new spectral type [WN/WC] for CSPNe, with PB8 as its first member. The central star of PB8 has a relatively low temperature of T-* = 52 kK, as expected for central stars in their early evolutionary stages. Its surrounding nebula is less than 3000 years old, i.e. relatively young. Existing calculations for the post-AGB evolution can produce hydrogen-deficient stars of the [WC] type, but do not predict the composition found in PB8. We discuss various scenarios that might explain the origin of this unique object. Y1 - 2010 UR - http://www.aanda.org/ U6 - https://doi.org/10.1051/0004-6361/200912183 SN - 0004-6361 ER - TY - JOUR A1 - Todt, Helge Tobias A1 - Kniazev, A. Y. A1 - Gvaramadze, V. V. A1 - Hamann, Wolf-Rainer A1 - Buckley, D. A1 - Crause, L. A1 - Crawford, S. M. A1 - Gulbis, A. A. S. A1 - Hettlage, C. A1 - Hooper, E. A1 - Husser, T. -O. A1 - Kotze, P. A1 - Loaring, N. A1 - Nordsieck, K. H. A1 - O'Donoghue, D. A1 - Pickering, T. A1 - Potter, S. A1 - Romero-Colmenero, E. A1 - Vaisanen, P. A1 - Williams, T. A1 - Wolf, M. T1 - Abell 48-a rare WN-type central star of a planetary nebula JF - Monthly notices of the Royal Astronomical Society N2 - A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition. KW - stars: abundances KW - stars: AGB and post-AGB KW - stars: mass-loss KW - stars: Wolf-Rayet KW - planetary nebulae: general KW - planetary nebulae: individual: PN G029.0+00.4 Y1 - 2013 U6 - https://doi.org/10.1093/mnras/stt056 SN - 0035-8711 SN - 1365-2966 VL - 430 IS - 3 SP - 2302 EP - 2312 PB - Oxford Univ. Press CY - Oxford ER - TY - CHAP A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Gräfener, G. T1 - Clumping in [WC]-type Central Stars from electron-scattering line wings N2 - While there is strong evidence for clumping in the winds of massive hot stars, very little is known about clumping in the winds from Central Stars. We have checked [WC]-type CSPN winds for clumping by inspecting the electron-scattering line wings. At least for three stars we found indications for wind inhomogeneities. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17711 ER - TY - JOUR A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer T1 - Wolf-Rayet central stars of planetary nebulae JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient, showing a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra, similar to those of the massive WC Pop I stars, and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8, which is of spectral type [WN/C], and IC 4663 and Abell 48, which are of spectral type [WN]. We review spectral analyses of Wolf-Rayet type central stars of different evolutionary stages and discuss the results in the context of stellar evolution. Especially we consider the question of a common evolutionary channel for [WC] stars. The constraints on the formation of [WN] or [WC/N] subtype stars will also be addressed. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88147 SP - 253 EP - 258 ER - TY - JOUR A1 - Toalá, Jesús Alberto A1 - Bowman, Dominic A1 - Van Reeth, Timothy A1 - Todt, Helge Tobias A1 - Dsilva, Karan A1 - Shenar, Tomer A1 - Koenigsberger, Gloria Suzanne A1 - Estrada-Dorado, Sandino A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer T1 - Multiple variability time-scales of the early nitrogen-rich Wolf-Rayet star WR 7 JF - Monthly notices of the Royal Astronomical Society N2 - We present the analysis of the optical variability of the early, nitrogen-rich Wolf-Rayet (WR) star WR 7. The analysis of multisector Transiting Exoplanet Survey Satellite (TESS) light curves and high-resolution spectroscopic observations confirm multiperiodic variability that is modulated on time-scales of years. We detect a dominant period of 2.6433 +/- 0.0005 d in the TESS sectors 33 and 34 light curves in addition to the previously reported high-frequency features from sector 7. We discuss the plausible mechanisms that may be responsible for such variability in WR 7, including pulsations, binarity, co-rotating interaction regions (CIRs), and clumpy winds. Given the lack of strong evidence for the presence of a stellar or compact companion, we suggest that WR 7 may pulsate in quasi-coherent modes in addition to wind variability likely caused by CIRs on top of stochastic low-frequency variability. WR 7 is certainly a worthy target for future monitoring in both spectroscopy and photometry to sample both the short (less than or similar to 1 d) and long (greater than or similar to 1000 d) variability time-scales. KW - stars: atmospheres KW - stars: evolution KW - stars: individual: WR 7 KW - stars: winds KW - outflows KW - stars: Wolft-Rayet Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1455 SN - 0035-8711 SN - 1365-2966 VL - 514 IS - 2 SP - 2269 EP - 2277 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Toala, Jesús Alberto A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Ignace, Richard A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Todt, Helge Tobias A1 - Chu, Y. -H. A1 - Guerrero, Martin A. A1 - Hainich, Rainer A1 - Torrejon, Jose Miguel T1 - On the Apparent Absence of Wolf-Rayet plus Neutron Star Systems BT - the Curious Case of WR124 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - Among the different types of massive stars in advanced evolutionary stages is the enigmatic WN8h type. There are only a few Wolf-Rayet (WR) stars with this spectral type in our Galaxy. It has long been suggested that WN8h-type stars are the products of binary evolution that may harbor neutron stars (NS). One of the most intriguing WN8h stars is the runaway WR 124 surrounded by its magnificent nebula M1-67. We test the presence of an accreting NS companion in WR 124 using similar to 100 ks long observations by the Chandra X-ray observatory. The hard X-ray emission from WR 124 with a luminosity of L-X similar to 10(31) erg s(-1) is marginally detected. We use the non-local thermodynamic equilibrium stellar atmosphere code PoWR to estimate the WR wind opacity to the X-rays. The wind of a WN8-type star is effectively opaque for X-rays, hence the low X-ray luminosity of WR 124 does not rule out the presence of an embedded compact object. We suggest that, in general, high-opacity WR winds could prevent X-ray detections of embedded NS, and be an explanation for the apparent lack of WR+NS systems. KW - circumstellar matter KW - ISM: jets and outflows KW - stars: massive KW - stars: evolution KW - stars: neutron KW - stars: Wolf-Rayet Y1 - 2018 U6 - https://doi.org/10.3847/2041-8213/aaf39d SN - 2041-8205 SN - 2041-8213 VL - 869 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Toala, Jesús Alberto A1 - Guerrero, Martín A. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Chu, Y.-H. A1 - Gruendl, R. A. A1 - Schönberner, Detlef A1 - Oskinova, Lida A1 - Marquez-Lugo, R. A. A1 - Fang, X. A1 - Ramos-Larios, Gerardo T1 - The born-again Planetary nebula A78: an X-RAY twin of A30 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T approximate to 1.0 x 10(6) K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L-X,L-CSPN =(1.2 +/- 0.3) x 10(31) erg s(-1) and L-X,L-DIFF =(9.2 +/- 2.3) x 10(30) erg s(-1) for the CSPN and diffuse components, respectively. KW - planetary nebulae: general KW - planetary nebulae: individual (A78) KW - stars: winds, outflows KW - X-rays: ISM Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/799/1/67 SN - 0004-637X SN - 1538-4357 VL - 799 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Surlan, B. A1 - Hamann, Wolf-Rainer A1 - Kubat, Jirij A1 - Oskinova, Lida A1 - Feldmeier, Achim T1 - Three-dimensional radiative transfer in clumped hot star winds I influence of clumping on the resonance line formation JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The true mass-loss rates from massive stars are important for many branches of astrophysics. For the correct modeling of the resonance lines, which are among the key diagnostics of stellar mass-loss, the stellar wind clumping has been found to be very important. To incorporate clumping into a radiative transfer calculation, three-dimensional (3D) models are required. Various properties of the clumps may have a strong impact on the resonance line formation and, therefore, on the determination of empirical mass-loss rates. Aims. We incorporate the 3D nature of the stellar wind clumping into radiative transfer calculations and investigate how different model parameters influence the resonance line formation. Methods. We develop a full 3D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds. The number density of clumps follows the mass conservation. For the first time, we use realistic 3D models that describe the dense as well as the tenuous wind components to model the formation of resonance lines in a clumped stellar wind. At the same time, we account for non-monotonic velocity fields. Results. The 3D density and velocity wind inhomogeneities show that there is a very strong impact on the resonance line formation. The different parameters describing the clumping and the velocity field results in different line strengths and profiles. We present a set of representative models for various sets of model parameters and investigate how the resonance lines are affected. Our 3D models show that the line opacity is lower for a larger clump separation and shallower velocity gradients within the clumps. Conclusions. Our model demonstrates that to obtain empirically correct mass-loss rates from the UV resonance lines, the wind clumping and its 3D nature must be taken into account. KW - stars: winds, outflows KW - stars: mass-loss KW - stars: early-type Y1 - 2012 U6 - https://doi.org/10.1051/0004-6361/201118590 SN - 0004-6361 VL - 541 PB - EDP Sciences CY - Les Ulis ER -