TY - THES A1 - Thomas, Timon T1 - Cosmic-ray hydrodynamics: theory, numerics, applications T1 - Hydrodynamik der kosmischen Strahlung: Theorie, Numerik, Anwendungen N2 - Cosmic rays (CRs) are a ubiquitous and an important component of astrophysical environments such as the interstellar medium (ISM) and intracluster medium (ICM). Their plasma physical interactions with electromagnetic fields strongly influence their transport properties. Effective models which incorporate the microphysics of CR transport are needed to study the effects of CRs on their surrounding macrophysical media. Developing such models is challenging because of the conceptional, length-scale, and time-scale separation between the microscales of plasma physics and the macroscales of the environment. Hydrodynamical theories of CR transport achieve this by capturing the evolution of CR population in terms of statistical moments. In the well-established one-moment hydrodynamical model for CR transport, the dynamics of the entire CR population are described by a single statistical quantity such as the commonly used CR energy density. In this work, I develop a new hydrodynamical two-moment theory for CR transport that expands the well-established hydrodynamical model by including the CR energy flux as a second independent hydrodynamical quantity. I detail how this model accounts for the interaction between CRs and gyroresonant Alfvén waves. The small-scale magnetic fields associated with these Alfvén waves scatter CRs which fundamentally alters CR transport along large-scale magnetic field lines. This leads to the effects of CR streaming and diffusion which are both captured within the presented hydrodynamical theory. I use an Eddington-like approximation to close the hydrodynamical equations and investigate the accuracy of this closure-relation by comparing it to high-order approximations of CR transport. In addition, I develop a finite-volume scheme for the new hydrodynamical model and adapt it to the moving-mesh code Arepo. This scheme is applied using a simulation of a CR-driven galactic wind. I investigate how CRs launch the wind and perform a statistical analysis of CR transport properties inside the simulated circumgalactic medium (CGM). I show that the new hydrodynamical model can be used to explain the morphological appearance of a particular type of radio filamentary structures found inside the central molecular zone (CMZ). I argue that these harp-like features are synchrotron-radiating CRs which are injected into braided magnetic field lines by a point-like source such as a stellar wind of a massive star or a pulsar. Lastly, I present the finite-volume code Blinc that uses adaptive mesh refinement (AMR) techniques to perform simulations of radiation and magnetohydrodynamics (MHD). The mesh of Blinc is block-structured and represented in computer memory using a graph-based approach. I describe the implementation of the mesh graph and how a diffusion process is employed to achieve load balancing in parallel computing environments. Various test problems are used to verify the accuracy and robustness of the employed numerical algorithms. N2 - Kosmische Strahlung (CR) ist ein allgegenwärtiger und wichtiger Bestandteil astrophysikalischer Umgebungen wie des interstellaren Mediums (ISM) und des Intracluster-Mediums (ICM). Ihre plasmaphysikalischen Wechselwirkungen mit elektromagnetischen Feldern beeinflussen ihre Transporteigenschaften weitgehend. Effektive Modelle, die die Mikrophysik des CR-Transports einbeziehen, sind erforderlich, um die Auswirkungen von CRs auf die sie umgebenden makrophysikalischen Medien zu untersuchen. Die Entwicklung solcher Modelle ist eine Herausforderung, aufgrund der konzeptionellen, Längenskalen-, und Zeitskalen-Unterschiede zwischen den Mikroskalen der Plasmaphysik und den Makroskalen der Umgebung. Hydrodynamische Theorien des CR-Transports erreichen dies, indem sie die Entwicklung der CR-Population in Form von statistischen Momenten erfassen. Im etablierten hydrodynamischen Ein-Moment Modell für den CR-Transport wird die Dynamik der gesamten CR-Population durch eine einzige statistische Größe wie der häufig verwendeten CR-Energiedichte beschrieben. In dieser Arbeit entwickle ich eine neue hydrodynamische Zwei-Momenten Theorie für den CR-Transport, die das etablierte hydrodynamische Modell um den CR-Energiefluss als zweite unabhängige hydrodynamische Größe erweitert. Ich erläutere, wie dieses Modell die Wechselwirkung zwischen CRs und gyroresonanten Alfvén-Wellen berücksichtigt. Die mit diesen Alfvén-Wellen verbundenen kleinskaligen Magnetfelder streuen die CRs, was den CR-Transport entlang großskaligen Magnetfeldlinien grundlegend verändert. Dies führt zu den CR-Strömungs-und Diffusioneffekten, welche beide in der neu vorgestellten hydrodynamischen Theorie erfasst werden. Ich verwende eine adaptierte Eddington Näherung, um die hydrodynamischen Gleichungen zu schließen und untersuche die Genauigkeit dieser Näherung, indem ich sie mit Näherungen höherer Ordnung für den CR-Transport vergleiche. Darüber hinaus entwickle ich ein Finite-Volumen-Schema für das neue hydrodynamische Modell und passe es an den mitbewegten Gitter Code Arepo an. Dieses Schema wird mittels einer Simulation eines CR-getriebenen galaktischen Windes angewendet. Ich untersuche, wie CRs den Wind beschleunigen und führe eine statistische Analyse der CR-Transporteigenschaften innerhalb des simulierten zirkumgalaktischen Mediums (CGM) durch. Ich zeige, dass das neue hydrodynamische Modell das morphologische Erscheinungsbild eines neu-entdeckten bestimmten Typs von filamentartigen Radiostrukturen, welcher in der zentralen molekularen Zone (CMZ) auffindbar ist, erklären kann. Ich schlage vor, dass es sich bei diesen harfenartigen Strukturen um synchrotronstrahlende CRs handelt, die zuvor von einer punktförmigen Quelle wie dem stellaren Wind eines massereichen Sterns oder eines Pulsars in geflochtene Magnetfeldlinien injiziert wurden. Schließlich stelle ich den Finite-Volumen-Code Blinc vor, der adaptive Gitterverfeinerungstechniken (AMR) verwendet, um Simulationen von Strahlungs-und Magnetohydrodynamik (MHD) durchzuführen. Das Gitter von Blinc ist blockstrukturiert und wird im Computerspe-icher mittels eines graphbasierten Ansatzes dargestellt. Ich beschreibe die Implementierung des Gittergraphen und wie ein Diffusionsprozess eingesetzt wird, um einen Lastausgleich in parallelen Rechenumgebungen zu erreichen. Verschiedene Testprobleme werden verwendet, um die Genauigkeit und Robustheit der verwendeten numerischen Algorithmen zu überprüfen. KW - cosmic rays KW - hydrodynamics KW - radiative transfer KW - methods: analytical KW - methods: numerical KW - Galactic center KW - Non-thermal radiation sources KW - galaktisches Zentrum KW - Quellen nichtthermischer Strahlung KW - kosmische Strahlung KW - Hydrodynamik KW - Methoden: analytisch KW - Methoden: numerisch KW - Strahlungstransport Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-563843 ER - TY - GEN A1 - Seiß, Martin A1 - Spahn, Frank T1 - Hydrodynamics of Saturn’s dense rings T2 - Postprints der Universität Potsdam : Postprint Mathematisch Naturwissenschaftliche Reihe N2 - The space missions Voyager and Cassini together with earthbound observations re-vealed a wealth of structures in Saturn’s rings. There are, for example, waves being excited at ring positions which are in orbital resonance with Saturn’s moons. Other structures can be assigned to embedded moons like empty gaps, moon induced wakes or S-shaped propeller features. Further-more, irregular radial structures are observed in the range from 10 meters until kilometers. Here some of these structures will be discussed in the frame of hydrodynamical modeling of Saturn’s dense rings. For this purpose we will characterize the physical properties of the ring particle ensemble by mean field quantities and point to the special behavior of the transport coefficients. We show that unperturbed rings can become unstable and how diffusion acts in the rings. Additionally, the alternative streamline formalism is introduced to describe perturbed regions of dense rings with applications to the wake damping and the dispersion relation of the density waves. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 574 KW - granular gas KW - instabilities KW - hydrodynamics KW - planetary rings Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413139 SP - 191 EP - 218 ER - TY - GEN A1 - Sandin, Christer A1 - Steffen, Matthias A1 - Jacob, Ralf A1 - Schönberner, Detlef A1 - Rühling, Ute A1 - Hamann, Wolf-Rainer A1 - Todt, Helge Tobias T1 - The role of heat conduction to the formation of [WC]-type planetary nebulae T2 - Proceedings of the International Astronomical Union N2 - X-ray observations of young Planetary Nebulæ (PNe) have revealed diffuse emission in extended regions around both H-rich and H-deficient central stars. In order to also repro-duce physical properties of H-deficient objects, we have, at first, extended our time-dependent radiation-hydrodynamic models with heat conduction for such conditions. Here we present some of the important physical concepts, which determine how and when a hot wind-blown bubble forms. In this study we have had to consider the, largely unknown, evolution of the CSPN, the slow (AGB) wind, the fast hot-CSPN wind, and the chemical composition. The main conclusion of our work is that heat conduction is needed to explain X-ray properties of wind-blown bubbles also in H-deficient objects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 582 KW - conduction KW - hydrodynamics KW - planetary nebulae: general Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413702 SN - 1866-8372 IS - 582 SP - 494 EP - 495 ER - TY - THES A1 - Klar, Jochen T1 - A detailed view of filaments and sheets of the warm-hot intergalactic medium T1 - Eine detaillierte Ansicht der Filamente und Ebenen des warm-heißen intergalaktischen Mediums N2 - In the context of cosmological structure formation sheets, filaments and eventually halos form due to gravitational instabilities. It is noteworthy, that at all times, the majority of the baryons in the universe does not reside in the dense halos but in the filaments and the sheets of the intergalactic medium. While at higher redshifts of z > 2, these baryons can be detected via the absorption of light (originating from more distant sources) by neutral hydrogen at temperatures of T ~ 10^4 K (the Lyman-alpha forest), at lower redshifts only about 20 % can be found in this state. The remain (about 50 to 70 % of the total baryons mass) is unaccounted for by observational means. Numerical simulations predict that these missing baryons could reside in the filaments and sheets of the cosmic web at high temperatures of T = 10^4.5 - 10^7 K, but only at low to intermediate densities, and constitutes the warm-hot intergalactic medium (WHIM). The high temperatures of the WHIM are caused by the formation of shocks and the subsequent shock-heating of the gas. This results in a high degree of ionization and renders the reliable detection of the WHIM a challenging task. Recent high-resolution hydrodynamical simulations indicate that, at redshifts of z ~ 2, filaments are able to provide very massive galaxies with a significant amount of cool gas at temperatures of T ~ 10^4 K. This could have an important impact on the star-formation in those galaxies. It is therefore of principle importance to investigate the particular hydro- and thermodynamical conditions of these large filament structures. Density and temperature profiles, and velocity fields, are expected to leave their special imprint on spectroscopic observations. A potential multiphase structure may act as tracer in observational studies of the WHIM. In the context of cold streams, it is important to explore the processes, which regulate the amount of gas transported by the streams. This includes the time evolution of filaments, as well as possible quenching mechanisms. In this context, the halo mass range in which cold stream accretion occurs is of particular interest. In order to address these questions, we perform particular hydrodynamical simulations of very high resolution, and investigate the formation and evolution of prototype structures representing the typical filaments and sheets of the WHIM. We start with a comprehensive study of the one-dimensional collapse of a sinusoidal density perturbation (pancake formation) and examine the influence of radiative cooling, heating due to an UV background, thermal conduction, and the effect of small-scale perturbations given by the cosmological power spectrum. We use a set of simulations, parametrized by the wave length of the initial perturbation L. For L ~ 2 Mpc/h the collapse leads to shock-confined structures. As a result of radiative cooling and of heating due to an UV background, a relatively cold and dense core forms. With increasing L the core becomes denser and more concentrated. Thermal conduction enhances this trend and may lead to an evaporation of the core at very large L ~ 30 Mpc/h. When extending our simulations into three dimensions, instead of a pancake structure, we obtain a configuration consisting of well-defined sheets, filaments, and a gaseous halo. For L > 4 Mpc/h filaments form, which are fully confined by an accretion shock. As with the one-dimensional pancakes, they exhibit an isothermal core. Thus, our results confirm a multiphase structure, which may generate particular spectral tracers. We find that, after its formation, the core becomes shielded against further infall of gas onto the filament, and its mass content decreases with time. In the vicinity of the halo, the filament's core can be attributed to the cold streams found in other studies. We show, that the basic structure of these cold streams exists from the very beginning of the collapse process. Further on, the cross section of the streams is constricted by the outwards moving accretion shock of the halo. Thermal conduction leads to a complete evaporation of the cold stream for L > 6 Mpc/h. This corresponds to halos with a total mass higher than M_halo = 10^13 M_sun, and predicts that in more massive halos star-formation can not be sustained by cold streams. Far away from the gaseous halo, the temperature gradients in the filament are not sufficiently strong for thermal conduction to be effective. N2 - Im Rahmen der kosmologischen Strukturbildung entstehen durch Gravitationsinstabilitäten Flächen, Filamente und schließlich Halos. Interessanterweise befinden sich zu jedem Zeitpunkt der kosmologischen Entwicklung der Großteil der Baryonen nicht in den Halos, sondern in den Filamenten und Ebenen des intergalaktischen Mediums. Während diese Baryonen bei höheren Rotverschiebungen (z ~ 2) noch in Form durch die Absorbtion von Licht (von weit entfernteren Quellen) durch neutralen Wasserstoff bei einer Temperatur von T ~ 10^4 K beobachtbar sind (Lyman-Alpha Wald), gilt dies bei niedrigeren Rotverschiebungen für nur noch ca. 20 % der Baryonen. Der überwiegende Teil (ca. 50-70 % der gesamten baryonischen Masse) sind bisher noch nicht direkt beobachtbar. Numerische Simulationen sagen jedoch voraus, das sich diese Baryonen in den Filamenten und Flächen des kosmischen Netzes befinden. Die entsprechende Gasverteilung zeichnet sich durch hohe Temperaturen T = 10^5 - 10^7 K und geringe bis mittlere Dichten aus und wird als warm-heißes intergalaktisches Medium (WHIM) bezeichnet. Die hohen Temperaturen entstehen in Folge der Bildung von Stoßwellen und der darauf folgenden Erhitzung des Gases (shock-heating). Das WHIM ist daher hochgradig ionisiert und sein verlässlicher Nachweis stellt eine große Herausforderung für die beobachtende Kosmologie dar. Neuere hydrodynamische Simulationen zeigen, dass sich bei höheren Rotverschiebungen von z ~ 2 Gasströmungen entlang der Filamente bilden, die massive Galaxien mit erheblichen Mengen an relativ kaltem Gas (T ~ 10^4 K) versorgen können. Dies hätte einen erheblichen Einfluss auf die Sternentstehung in diesen Galaxien. Es ist daher von grundsätzlichem Interesse, die spezifischen hydro- und thermodynamischen Bedingungen in den Strukturen des WHIM zu untersuchen. Sowohl Dichte- und Temperaturprofile als auch Geschwindigkeitsfelder prägen spektroskopische Beobachtungen. Eine mögliche Mehrphasenstruktur des WHIM könnte daher als Indikator in beobachtenden Studien dienen. Im Zusammenhang mit den kalten Strömen ist es besonders interessant, Prozesse zu untersuchen die den Zufluss von kaltem Gas zu den Galaxien regulieren. Dies umfasst die Zeitentwicklung des Anteils an kaltem Gas in den Filamenten, sowie mögliche Mechanismen, die zum Versiegen des Zuflusses von kaltem Gas auf die Galaxienscheibe führen. Um diese Zusammenhänge zu erforschen, führen wir spezielle hydrodynamische Simulationen mit sehr hoher Auflösung durch, die zu ausgewählten, wohldefinierten Strukturen führen, die das WHIM charakterisieren. Wir beginnen mit einer ausführlichen Untersuchung des eindimensionalen Kollaps einer sinusförmigen Störung (pancake formation). Hierbei untersuchen wir den Einfluss von Strahlungkühlung, Heizung durch den intergalaktischen UV Hintergrund, Wärmeleitung, sowie von kleinskaligen Störungen, welche dem kosmologischen Störungsspektrum folgen. Wir benutzen hierbei eine Reihe von Simulationen, welche die Längenskala der anfänglichen Störung L als Parameter verwenden. Für L ~ 2 Mpc/h führt der Kollaps zur Ausbildung einer Stoßwelle. Zusätzlich entsteht als Folge der Strahlungskühlung und der Heizung durch den UV Hintergrund ein relativ dichter und kalter isothermer Kern. Mit ansteigendem L wird dieser Kern dichter und kompakter. Durch Wärmeleitung reduziert sich die räumliche Ausdehnung des Kerns. Für L ~ 30 Mpc/h führt dies zu einem Verschwinden des Kerns. Mit der Erweiterung unserer Methodik auf dreidimensionale Simulationen, entsteht nun eine Konfiguration, welche aus wohldefinierten Flächen, Filamenten und einem gasförmigen Halo besteht. Für L > 4 Mpc/h, erhalten wir Filamente, die vollständig durch Akkretionsschocks begrenzt sind. Wie in unseren eindimensionalen Simulationen weisen auch sie einen isothermen Kern auf. Dies legt nahe, dass das WHIM eine Mehrphasenstruktur besitzt und mögliche Spektralsignaturen erzeugen kann. Nach seiner Entstehung ist der Kern gegen weiteren Zufluss von Gas abgeschirmt und seine Masse reduziert sich mit der Zeit. In der direkten Umgebung des Halos entspricht der Kern des Filamentes den oben angesprochenen kalten Strömen. Unsere Untersuchung zeigt, dass diese während der gesamten Entwicklung des Halos existent sind. In der weiteren Entwicklung werden sie durch den expandierenden Akkretionsschock des Halos verengt. Ab einer Skala von L > 6 Mpc/h kann Wärmeleitung zu einem Verschwinden des Zustroms von kaltem Gas führen. Diese Skala entspricht Halos mit einer Gesamtmasse von M_halo = 10^13 M_sun. Galaxien, die sich in noch massiveren Halos bilden, können daher nicht durch kalte Ströme mit Gas für die Sternentstehung versorgt werden. Im Filament, weit außerhalb des gasförmigen Halos, sind die Temperaturgradienten zu klein, um effiziente Wärmeleitung zu ermöglichen. KW - Kosmologie KW - Hydrodynamik KW - Intergalaktisches Medium KW - cosmology KW - hydrodynamics KW - intergalactic medium Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-58038 ER - TY - THES A1 - Feldmeier, Achim T1 - Hydrodynamics of astrophysical winds driven by scattering in spectral lines N2 - Liniengetriebene Winde werden durch Impulsübertrag von Photonen auf ein Plasma bei Absorption oder Streuung in zahlreichen Spektrallinien beschleunigt. Dieser Prozess ist besonders effizient für ultraviolette Strahlung und Plasmatemperaturen zwischen 10^4 K und 10^5 K. Zu den astronomischen Objekten mit liniengetriebenen Winden gehören Sterne der Spektraltypen O, B und A, Wolf-Rayet-Sterne sowie Akkretionsscheiben verschiedenster Größenordnung, von Scheiben um junge Sterne und in kataklysmischen Veränderlichen bis zu Quasarscheiben. Es ist bislang nicht möglich, das vollständige Windproblem numerisch zu lösen, also die Hydrodynamik, den Strahlungstransport und das statistische Gleichgewicht dieser Strömungen gleichzeitig zu behandeln. Die Betonung liegt in dieser Arbeit auf der Windhydrodynamik, mit starken Vereinfachungen in den beiden anderen Gebieten. Wegen persönlicher Beteiligung betrachte ich drei Themen im Detail. 1. Windinstabilität durch Dopplerde-shadowing des Gases. Die Instabilität bewirkt, dass Windgas in dichte Schalen komprimiert wird, die von starken Stoßfronten begrenzt sind. Schnelle Wolken entstehen im Raum zwischen den Schalen und stoßen mit diesen zusammen. Dies erzeugt Röntgenflashes, die die beobachtete Röntgenstrahlung heißer Sterne erklären können. 2. Wind runway durch radiative Wellen. Der runaway zeigt, warum beobachtete liniengetriebene Winde schnelle, kritische Lösungen anstelle von Brisenlösungen (oder shallow solutions) annehmen. Unter bestimmten Bedingungen stabilisiert der Wind sich auf masseüberladenen Lösungen, mit einem breiten, abbremsenden Bereich und Knicken im Geschwindigkeitsfeld. 3. Magnetische Winde von Akkretionsscheiben um Sterne oder in aktiven Galaxienzentren. Die Linienbeschleunigung wird hier durch die Zentrifugalkraft entlang korotierender poloidaler Magnetfelder und die Lorentzkraft aufgrund von Gradienten im toroidalen Feld unterstützt. Ein Wirbelblatt, das am inneren Scheibenrand beginnt, kann zu stark erhöhten Massenverlustraten führen. N2 - Line driven winds are accelerated by the momentum transfer from photons to a plasma, by absorption and scattering in numerous spectral lines. Line driving is most efficient for ultraviolet radiation, and at plasma temperatures from 10^4 K to 10^5 K. Astronomical objects which show line driven winds include stars of spectral type O, B, and A, Wolf-Rayet stars, and accretion disks over a wide range of scales, from disks in young stellar objects and cataclysmic variables to quasar disks. It is not yet possible to solve the full wind problem numerically, and treat the combined hydrodynamics, radiative transfer, and statistical equilibrium of these flows. The emphasis in the present writing is on wind hydrodynamics, with severe simplifications in the other two areas. I consider three topics in some detail, for reasons of personal involvement. 1. Wind instability, as caused by Doppler de-shadowing of gas parcels. The instability causes the wind gas to be compressed into dense shells enclosed by strong shocks. Fast clouds occur in the space between shells, and collide with the latter. This leads to X-ray flashes which may explain the observed X-ray emission from hot stars. 2. Wind runaway, as caused by a new type of radiative waves. The runaway may explain why observed line driven winds adopt fast, critical solutions instead of shallow (or breeze) solutions. Under certain conditions the wind settles on overloaded solutions, which show a broad deceleration region and kinks in their velocity law. 3. Magnetized winds, as launched from accretion disks around stars or in active galactic nuclei. Line driving is assisted by centrifugal forces along co-rotating poloidal magnetic field lines, and by Lorentz forces due to toroidal field gradients. A vortex sheet starting at the inner disk rim can lead to highly enhanced mass loss rates. KW - Hydrodynamik KW - Strahlungstransport KW - Sternwinde KW - Akkretionsscheiben KW - hydrodynamics KW - radiative transfer KW - stellar winds KW - accretion disks Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000388 ER -