TY - THES A1 - Rothe, Monique T1 - Response of intestinal Escherichia coli to dietary factors in the mouse intestine T1 - Anpassung von Escherichia coli an Ernährungsfaktoren im Intestinaltrakt der Maus N2 - Diet is a major force influencing the intestinal microbiota. This is obvious from drastic changes in microbiota composition after a dietary alteration. Due to the complexity of the commensal microbiota and the high inter-individual variability, little is known about the bacterial response at the cellular level. The objective of this work was to identify mechanisms that enable gut bacteria to adapt to dietary factors. For this purpose, germ-free mice monoassociated with the commensal Escherichia coli K-12 strain MG1655 were fed three different diets over three weeks: a diet rich in starch, a diet rich in non-digestible lactose and a diet rich in casein. Two dimensional gel electrophoresis and electrospray tandem mass spectrometry were applied to identify differentially expressed proteins of E. coli recovered from small intestine and caecum of mice fed the lactose or casein diets in comparison with those of mice fed the starch diet. Selected differentially expressed bacterial proteins were characterised in vitro for their possible roles in bacterial adaptation to the various diets. Proteins belonging to the oxidative stress regulon oxyR such as alkyl hydroperoxide reductase subunit F (AhpF), DNA protection during starvation protein (Dps) and ferric uptake regulatory protein (Fur), which are required for E. coli’s oxidative stress response, were upregulated in E. coli of mice fed the lactose-rich diet. Reporter gene analysis revealed that not only oxidative stress but also carbohydrate-induced osmotic stress led to the OxyR-dependent expression of ahpCF and dps. Moreover, the growth of E. coli mutants lacking the ahpCF or oxyR genes was impaired in the presence of non-digestible sucrose. This indicates that some OxyR-dependent proteins are crucial for the adaptation of E. coli to osmotic stress conditions. In addition, the function of two so far poorly characterised E. coli proteins was analysed: 2 deoxy-D gluconate 3 dehydrogenase (KduD) was upregulated in intestinal E. coli of mice fed the lactose-rich diet and this enzyme and 5 keto 4 deoxyuronate isomerase (KduI) were downregulated on the casein-rich diet. Reporter gene analysis identified galacturonate and glucuronate as inducers of the kduD and kduI gene expression. Moreover, KduI was shown to facilitate the breakdown of these hexuronates, which are normally degraded by uronate isomerase (UxaC), altronate oxidoreductase (UxaB), altronate dehydratase (UxaA), mannonate oxidoreductase (UxuB) and mannonate dehydratase (UxuA), whose expression was repressed by osmotic stress. The growth of kduID-deficient E. coli on galacturonate or glucuronate was impaired in the presence of osmotic stress, suggesting KduI and KduD to compensate for the function of the regular hexuronate degrading enzymes under such conditions. This indicates a novel function of KduI and KduD in E. coli’s hexuronate metabolism. Promotion of the intracellular formation of hexuronates by lactose connects these in vitro observations with the induction of KduD on the lactose-rich diet. Taken together, this study demonstrates the crucial influence of osmotic stress on the gene expression of E. coli enzymes involved in stress response and metabolic processes. Therefore, the adaptation to diet-induced osmotic stress is a possible key factor for bacterial colonisation of the intestinal environment. N2 - Sowohl Humanstudien als auch Untersuchungen an Tiermodellen haben gezeigt, dass die Ernährung einen entscheidenden Einfluss auf die Zusammensetzung der Darmmikrobiota hat. Aufgrund der Komplexität der Mikrobiota und der inter individuellen Unterschiede sind die zellulären Mechanismen, die dieser Beobachtung zugrunde liegen, jedoch weitgehend unbekannt. Das Ziel dieser Arbeit war deshalb, Anpassungsmechanismen von kommensalen Darmbakterien auf unterschiedliche Ernährungsfaktoren mittels eines simplifizierten Modells zu untersuchen. Dazu wurden keimfreie Mäuse mit Escherichia coli MG1655 besiedelt und drei Wochen mit einer stärkehaltigen, einer laktosehaltigen oder einer kaseinhaltigen Diät gefüttert. Mittels zwei dimensionaler Gelelektrophorese und Elektrospray Ionenfallen-Massenspektrometrie wurde das Proteom der intestinalen E. coli analysiert und differentiell exprimierte bakterielle Proteine in Abhängigkeit der gefütterten Diät identifiziert. Die Funktion einiger ausgewählter Proteine bei der Anpassung von E. coli auf die jeweilige Diät wurde im Folgenden in vitro untersucht. E. coli Proteine wie z.B. die Alkylhydroperoxid Reduktase Untereinheit F (AhpF), das DNA Bindeprotein Dps und der eisenabhängige Regulator Fur, deren Expression unter der Kontrolle des Transkriptionsregulators OxyR steht, wurden stärker exprimiert, wenn die Mäuse mit der laktosehaltigen Diät gefüttert wurden. Reportergenanalysen zeigten, dass nicht nur oxidativer Stress, sondern auch durch Kohlenhydrate ausgelöster osmotischer Stress zu einer OxyR abhängigen Expression der Gene ahpCF and dps führte. Weiterhin wiesen E. coli Mutanten mit einer Deletion der ahpCF oder oxyR Gene ein vermindertes Wachstum in Gegenwart von nicht fermentierbarer Saccharose auf. Das spricht dafür, dass OxyR abhängige Proteine eine wichtige Rolle bei der Anpassung von E. coli an osmotischen Stress spielen. Weiterhin wurde die Funktion von zwei bisher wenig charakterisierten E. coli Proteinen untersucht: die 2 Deoxy D Glukonate 3 Dehydrogenase (KduD) wurde im Darm von Mäusen, die mit der laktosehaltigen Diät gefüttert wurden, induziert, während dieses Protein und die 5 Keto 4 Deoxyuronate Isomerase (KduI) nach Fütterung der kaseinhaltigen Diät herunterreguliert wurden. Mittels Reportergenanalysen wurde gezeigt, dass Galakturonat und Glukuronat die kduD und kduI Expression induzierten. KduI begünstigte die Umsetzung dieser Hexuronate. In E. coli wird die Umsetzung von Galakturonat und Glukuronat typischerweise von den Enzymen Uronate Isomerase (UxaC), Altronate Oxidoreduktase (UxaB), Altronate Dehydratase (UxaA), Mannonate Oxidoreduktase (UxuB) und Mannonate Dehydratase (UxuA) katalysiert. Weitere Experimente verdeutlichten, dass osmotischer Stress die Expression der Gene uxaCA, uxaB und uxuAB verminderte. Darüber hinaus zeigten kduID defiziente E. coli Mutanten in Gegenwart von Galakturonat oder Glukuronat und durch Saccharose ausgelösten osmotischen Stress eine Verlangsamung des Wachstums. Das deutet darauf hin, dass KduI und KduD die durch osmotischen Stress bedingten Funktionseinschränkungen der regulären hexuronatabbauenden Enzyme kompensieren. Die beobachtete Bildung von intrazellulären Hexuronaten während des Laktosekatabolismus in vitro stellt eine Verbindung zu dem ursprünglichen Tierexperiment her und deutet darauf hin, dass der Ernährungsfaktor Laktose die Verfügbarkeit von Hexuronat für intestinale E. coli beeinflusst. Diese Studie weist somit den Einfluss von osmotischem Stress auf die Expression von OxyR abhängigen Genen, die für Stressantwortproteine sowie für metabolische Enzymen kodieren, in E. coli nach. Durch Nahrungsfaktoren entstandener osmotischer Stress stellt demnach einen entscheidenden Faktor für die bakterielle Kolonisation des Darmes dar. KW - Mikrobiota KW - Escherichia coli KW - Proteom KW - Ernährungsfaktoren KW - OxyR KW - microbiota KW - Escherichia coli KW - proteome KW - dietary factors KW - OxyR Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-66387 ER - TY - THES A1 - Frömmel, Ulrike T1 - Vergleichende geno- und phänotypische Charakterisierung von Escherichia coli aus Menschen, Hausschweinen und Wildtieren T1 - Comparative genotypic and phenotypic characterization of Escherichia coli from humans, domestic pigs and wild animals N2 - Escherichia (E.) coli ist als kommensales Bakterium ein wichtiger Bestandteil des Mikrobioms von Säugern, jedoch zudem der häufigste Infektionserreger des Menschen. Entsprechend des Infektionsortes werden intestinal (InPEC) und extraintestinal pathogene E. coli (ExPEC) unterschieden. Die Pathogenese von E. coli-Infektionen ist durch Virulenzfaktoren determiniert, welche von jeweils spezifischen virulenzassoziierten Genen (inVAGs und exVAGs) kodiert werden. Häufig werden exVAGs auch in E. coli-Isolaten aus dem Darm gesunder Wirte nachgewiesen. Dies führte zu der Vermutung, dass exVAGs die intestinale Kolonisierung des Wirtes durch E. coli unterstützen. Das Hauptziel dieser Arbeit bestand darin, das Wissen über den Einfluss von exVAGs auf die Besiedlung und damit die Adhäsion von E. coli an Epithelzellen des Darmtraktes zu erweitern. Die Durchführung einer solch umfassenden E. coli-Populationsstudie erforderte die Etablierung neuer Screeningmethoden. Für die genotypische Charakterisierung wurden mikropartikelbasierte Multiplex-PCR-Assays zum Nachweis von 44 VAGs und der Phylogenie etabliert. Für die phänotypische Charakterisierung wurden Adhäsions- und Zytotoxizitätsassays etabliert. Die Screeningmethoden basieren auf der VideoScan-Technologie, einem automatisierten bildbasierten Multifluoreszenzdetektionssystem. Es wurden 398 E. coli-Isolate aus 13 Wildsäugerarten und 5 Wildvogelarten sowie aus gesunden und harnwegserkrankten Menschen und Hausschweinen charakterisiert. Die Adhäsionsassays hatten zum Ziel, sowohl die Adhäsionsraten als auch die Adhäsionsmuster der 317 nicht hämolytischen Isolate auf 5 Epithelzelllinien zu bestimmen. Die Zytotoxizität der 81 hämolytischen Isolate wurde in Abhängigkeit der Inkubationszeit auf 4 Epithelzelllinien geprüft. In den E. coli-Isolaten wurde eine Reihe von VAGs nachgewiesen. Potentielle InPEC, insbesondere shigatoxinproduzierende und enteropathogene E. coli wurden aus Menschen, Hausschweinen und Wildtieren, vor allem aus Rehen und Feldhasen isoliert. exVAGs wurden mit stark variierender Prävalenz in Isolaten aus allen Arten detektiert. Die größte Anzahl und das breiteste Spektrum an exVAGs wurde in Isolaten aus Urin harnwegserkrankter Menschen, gefolgt von Isolaten aus Dachsen und Rehen nachgewiesen. In Isolaten der phylogenetischen Gruppe B2 wurden mehr exVAGs detektiert als in den Isolaten der phylogenetischen Gruppen A, B1 und D. Die Ergebnisse der Adhäsionsassays zeigten, dass die meisten Isolate zelllinien-, gewebe- oder wirtsspezifisch adhärierten. Ein Drittel der Isolate adhärierte an keiner Zelllinie und nur zwei Isolate adhärierten stark an allen Zelllinien. Grundsätzlich adhärierten mehr Isolate an humanen sowie an intestinalen Zelllinien. Besonders Isolate aus Eichhörnchen und Amseln sowie aus Urin harnwegserkrankter Menschen und Hausschweine waren in der Lage, stark zu adhärieren. Hierbei bildeten die Isolate als Adhäsionsmuster diffuse Adhäsion, Mikrokolonien, Ketten und Agglomerationen. Mittels statistischer Analysen wurden Assoziationen zwischen exVAGs und einer hohen Adhäsionsrate ersichtlich. So war beispielsweise das Vorkommen von afa/dra mit einer höheren Adhäsionsrate auf Caco-2- und 5637-Zellen und von sfa/foc auf IPEC-J2-Zellen assoziiert. Die Ergebnisse der Zytotoxizitätsassays zeigten eine sehr starke und zeitabhängige Zerstörung der Monolayer aller Epithelzelllinien durch die α-Hämolysin-positiven Isolate. Auffallend war die hohe Toxizität hämolytischer Isolate aus Wildtieren gegenüber den humanen Zelllinien. Mit den innerhalb dieser Arbeit entwickelten Screeningmethoden war es möglich, große Mengen an Bakterien zu charakterisieren. Es konnte ein Überblick über die Verbreitung von VAGs in E. coli aus unterschiedlichen Wirten gewonnen werden. Besonders Wildtiere wurden sowohl durch den Nachweis von VAGs in den entsprechenden Isolaten, verbunden mit deren Adhäsionsfähigkeit und ausgeprägter Zytotoxizität als Reservoire pathogener E. coli identifiziert. Ebenso wurde eine zelllinienspezifische Adhäsion von Isolaten mit bestimmten exVAGs deutlich. Damit konnte der mögliche Einfluss von exVAGs auf die intestinale Kolonisierung bestätigt werden. In weiterführenden Arbeiten sind jedoch Expressions- und Funktionsanalysen der entsprechenden Proteine unerlässlich. Es wird anhand der Mikrokoloniebildung durch kommensale E. coli vermutet, dass Adhäsionsmuster und demzufolge Kolonisierungsstrategien, die bisher pathogenen E. coli zugeschrieben wurden, eher als generelle Kolonisierungsstrategien zu betrachten sind. Das E. coli-α-Hämolysin wirkt im Allgemeinen zytotoxisch auf Epithelzellen. Ein in der Fachliteratur diskutierter adhäsionsunterstützender Mechanismus dieses Toxins ist demnach fragwürdig. Innerhalb dieser Arbeit konnte gezeigt werden, dass die entwickelten Screeningmethoden umfassende Analysen einer großen Anzahl an E. coli-Isolaten ermöglichen. N2 - Escherichia (E.) coli is as commensal bacterium an important component of the microbiome of humans and animals, but also the most common infectious agent of human. According to the site of infection intestinal pathogenic (InPEC) and extraintestinal pathogenic E. coli (ExPEC) are differentiated. The pathogenesis of E. coli infections is determined by virulence factors encoded by specific virulence-associated genes (inVAGs and exVAGs). Frequently, exVAGs also be detected in E. coli isolates from the intestine of clinically healthy hosts. This led to the assumption that exVAGs support the intestinal colonization of the host by E. coli. The main objective of this work was to extend the knowledge about the influence of exVAGs on the settlement and adhesion of E. coli to epithelial cells of the intestinal tract. The implementation of such a comprehensive E. coli population study required the establishment of new screening methods. For the genotypic characterization novel microbead-based multiplex PCR assays were established to detect 44 VAGs and phylogeny. For the phenotypic characterization novel in vitro adhesion and cytotoxicity assays were established. These screening methods based on the VideoScan technology, which is an automated image-based multi-fluorescence detection system. There have been characterized 398 E. coli isolates from 13 wild mammal species and 5 species of wild birds as well as from healthy and urinary diseased humans and domestic pigs. The adhesion assays were aimed at both the adhesion rates and the adhesion patterns of the 317 non-hemolytic isolates on intestinal human Caco-2 and porcine IPEC-J2 cells and on human urinary bladder 5637, porcine kidney PK-15 epithelial and HEp-2 cells. The cytotoxicity of 81 hemolytic isolates was compared on the human intestinal epithelium LoVo, and on 5637, IPEC-J2 and PK-15 according to the incubation period. The E. coli isolates showed a series of VAGs. Potential InPEC, especially shigatoxin-producing and enteropathogenic E. coli were isolated from humans, domestic pigs and wild animals, especially from deers (Capreolus capreolus) and hares (Lepus europaeus). exVAGs were detected with widely varying prevalence in E. coli isolates from all species studied. The largest number and the widest range of exVAGs were shown in isolates from urine of urinary diseased patients, followed by isolates from badgers (Meles meles) and deer. Within the isolates of the phylogenetic group B2 more exVAGs were detected as within the isolates of the phylogenetic groups A, B1, and D. Adhesion of the E. coli isolates was specific to cells, host, and tissue, though it was also unspecific. A third of the isolates adhered to any cell line and only two isolates adhered strongly to all cell lines. Basically, more bacteria adhered to human as well as to intestinal cell lines. Especially isolates from squirrels (Sciurus vulgaris) and blackbirds (Turdus merula) and from the urine of urinary diseased humans and domestic pigs were able to strongly adhere. Commensal and pathogenic isolates can adhere in various forms, including diffuse distribution, microcolonies, chains and clumps. Using statistical analyzes associations between the occurrence of some VAGs and a high adhesion rates were seen. Several known adhesins were associated with host cell specific adhesion. Other new potential adhesion genes were described. The results of the cytotoxicity assays showed a very strong and time-dependent degradation of the epithelial cell monolayer of all the α-hemolysin-positive E. coli isolates. The high toxicity of hemolytic isolates from wild animals against the human cell lines was striking. The screening methods enabled both, the genotypic and phenotypic characterisation of large amounts of bacterial isolates. An overview of the distribution of VAGs in E. coli from different hosts was obtained. Especially wild animals were either by the detection of VAGs in the corresponding E. coli isolates, combined with the adhesion and marked cytotoxicity identified as reservoirs of pathogenic E. coli. As well, a cell-line specific adhesion of E. coli isolates with certain exVAGs became clear. Thus, the possible influence on the intestinal colonization of exVAGs could be confirmed. In further work, however, expression and functional analysis of the corresponding proteins are essential. It is suspected on the basis of microcolony formation by commensal E. coli that adhesion patterns and consequently colonization strategies that were previously attributed to pathogenic E. coli, are to be regarded rather as a general colonization strategy. The E. coli α-hemolysin acts generally cytotoxic to epithelial cells. An in the literature discussed adhesion supporting mechanism of this toxin is therefore questionable. Within this work it was shown that the developed screening methods enable comprehensive analyzes of a large number of E. coli isolates. KW - Escherichia coli KW - Adhäsion KW - virulenzassoziierte Gene KW - Hämolyse KW - ExPEC KW - Escherichia coli KW - adhesion KW - virulence-associated genes KW - hemolysis KW - ExPEC Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-69147 ER -