TY - THES A1 - Lazar, Paul T1 - Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition T1 - Transport Mechanismen und Benetzungsdynamik in molekular dünnen Schichten langketiger Alkane an Fest/Gas Grenzfächen : Beziehung zum Fest-Flüssig Phasenübergang N2 - Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film ("surface freezing"). Thus, the alkane melt wets its own solid only partially which is a quite rare phenomenon in nature. The thesis treats about how the alkane melt wets its own solid surface above and below the bulk melting temperature and about the corresponding melting and solidification processes. Liquid alkane drops can be undercooled to few degrees below the bulk melting temperature without immediate solidification. This undercooling behaviour is quite frequent and theoretical quite well understood. In some cases, slightly undercooled drops start to build two-dimensional solid terraces without bulk solidification. The terraces grow radially from the liquid drops on the substrate surface. They consist of few molecular layers with the thickness multiple of all-trans length of the molecule. By analyzing the terrace growth process one can find that, both below and above the melting point, the entire substrate surface is covered with a thin film of mobile alkane molecules. The presence of this film explains how the solid terrace growth is feeded: the alkane molecules flow through it from the undercooled drops to the periphery of the terrace. The study shows for the first time the coexistence of a molecularly thin film ("precursor") with partially wetting bulk phase. The formation and growth of the terraces is observed only in a small temperature interval in which the 2D nucleation of terraces is more likely than the bulk solidification. The nucleation mechanisms for 2D solidification are also analyzed in this work. More surprising is the terrace behaviour above bulk the melting temperature. The terraces can be slightly overheated before they melt. The melting does not occur all over the surface as a single event; instead small drops form at the terrace edge. Subsequently these drops move on the surface "eating" the solid terraces on their way. By this they grow in size leaving behind paths from were the material was collected. Both overheating and droplet movement can be explained by the fact that the alkane melt wets only partially its own solid. For the first time, these results explicitly confirm the supposed connection between the absence of overheating in solid and "surface melting": the solids usually start to melt without an energetic barrier from the surface at temperatures below the bulk melting point. Accordingly, the surface freezing of alkanes give rise of an energetic barrier which leads to overheating. N2 - Sowohl Benetzung als auch Phasenübergänge spielen eine sehr wichtige Rolle im täglichen Leben. Molekular dünne Filme langkettiger Alkane an Festkörper/Gas-Grenzflächen (z. B. C30H62 an Silizium-Waferoberflächen) sind sehr gute Modellsysteme um die Wechselbeziehung zwischen Benetzungsverhalten und (Volumen-)Phasenübergängen zu untersuchen. In einem Temperaturbereich knapp oberhalb der Volumenschmelztemperatur benetzt die Alkanschmelze die Substratoberfläche nur partiell (Alkantropfen). In diesem Temperaturbereich ist die Substratoberfläche mit einer molekular dünnen, festkörperartig geordneten Alkanschicht bedeckt ("Oberflächengefrieren" ). Die Alkanschmelze benetzt also die eigene Festkörperoberfläche nur partiell, ein in der Natur ziemlich seltenes Phänomen. Die Dissertation beschäftigt sich damit wie die Alkanschmelze ihre eigene Festkörperoberfläche über und unter dem Volumenschmelzpunkt benetzt und mit den entsprechenden Vorgängen beim Schmelzen bzw. Erstarren. Flüssige Alkantropfen lassen sich einige Grad unter ihren Schmelzpunkt unterkühlen ohne sich sofort zu verfestigen. Dieses "Unterkühlungsverhalten" ist üblich und es ist theoretisch qualitativ gut verstanden. Allerdings beobachtet man bei den Alkanen bei leichter Unterkühlung statt einer eventuellen Volumenverfestigung oft die Ausbildung von zweidimensionalen Terrassen aus erstarrtem Alkanen. Die Terrassen wachsen auf der Substratoberfläche radial aus den flüssigen Tropfen. Sie bestehen aus wenigen Alkanlagen mit jeweils der Dicke einer Moleküllänge. Die Analyse der Terrassen-Wachstumsprozesse zeigt, dass die gesamte Substratoberfläche einschliesslich der Terrassen sowohl oberhalb als auch unterhalb der Volumenschmelztemperatur mit einer dünnen Schicht mobiler Alkanmoleküle bedeckt ist. Durch diese Schicht fliessen bei Unterkühlung die Alkane vom unterkühlten Tropfen zur Terrassenkante und liefern den Nachschub für deren Wachstum. Die Untersuchungen zeigen damit erstmalig die Koexistenz eines molekular dünnen Films ("Precursor") mit einer partiell benetzenden Volumenphase. Die Entstehung und das Wachstum der Terrassen wird nur in einem engen Temperaturfenster beobachtet in dem die Keimbildung zweidimensionaler Terrassen wahrscheinlicher ist als die dreidimensionale Volumenverfestigung. Auch dieses Keimbildungsverhalten wird in der Dissertation genauer analysiert. Noch erstaunlicher als das Terrassenwachstum, d. h. das Verfestigungsverhalten ist das Schmelzverhalten der Terrassen. Sie lassen sich bis zu einer gewissen Temperatur überhitzen bevor sie schmelzen! Weiterhin findet bei genügender Überhitzung das Schmelzen nicht gleichzeitig überall statt sondern es entstehen zuerst kleine Alkantropfen an den Terrassenrändern. Diese bewegen sich dann über die Substratoberfläche und "fressen" sich durch die festen Terrassen. Dabei wachsen sie weil sie das geschmolzene Material aufnehmen und hinterlassen eine alkanfreie Spur. Sowohl die Überhitzung als auch die Tropfenbewegung lassen sich damit erklären dass die flüssige Alkanschmelze ihren eigenen Festkörper nur partiell benetzt. Die Ergebnisse bestätigen erstmals explizit den seit vielen Jahrzehnten vermuteten Zusammenhang zwischen der üblicherweise nicht beobachtbaren Überhitzung von Festkörpern und Oberflächenschmelzen: Festkörper beginnen normalerweise ohne Energiebarriere von der Oberfläche an zu schmelzen. Entsprechend bildet das Oberflächengefrieren der Alkane eine Energiebarriere und erlaubt damit deren Überhitzen. KW - Benetzung KW - Phasenübergang KW - Keimbildung KW - Alkane KW - Unterkühlung KW - Überhitzung KW - 2D Transport KW - wetting KW - phase transitions KW - long-chain alkane KW - 2D transport KW - nucleation KW - undercooling KW - overheating Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5275 ER - TY - THES A1 - Knauf, Jan T1 - Synthesis of highly fluorinated precursors and their deposition conditions for self-assembled monolayers with defined small-scale surface structures as templates for the manipulation of wetting behavior N2 - "How Wenzel and Cassie were wrong" – this was the eye-catching title of an article published by Lichao Gao and Thomas McCarthy in 2007, in which fundamental interpretations of wetting behavior were put into question. The authors initiated a discussion on a subject, which had been generally accepted a long time ago and they showed that wetting phenomena were not as fully understood as imagined. Similarly, this thesis tries to put a focus on certain aspects of liquid wetting, which so far have been widely neglected in terms of interpretation and experimental proof. While the effect of surface roughness on the macroscopically observed wetting behavior is commonly and reliably interpreted according to the well-known models of Wenzel and Cassie/Baxter, the size-scale of the structures responsible for the surface's rough texture has not been of further interest. Analogously, the limits of these models have not been described and exploited. Thus, the question arises, what will happen when the size of surface structures is reduced to the size of the contacting liquid molecules itself? Are common methods still valid or can deviations from macroscopic behavior be observed? This thesis wants to create a starting point regarding these questions. In order to investigate the effect of smallest-scale surface structures on liquid wetting, a suitable model system is developed by means of self-assembled monolayer (SAM) formation from (fluoro)organic thiols of differing lengths of the alkyl chain. Surface topographies are created which rely on size differences of several Ångströms and exhibit surprising wetting behavior depending on the choice of the individual precursor system. Thus, contact angles are experimentally detected, which deviate considerably from theoretical calculations based on Wenzel and Cassie/Baxter models and confirm that sub-nm surface topographies affect wetting. Moreover, experimentally determined wetting properties are found to correlate well to an assumed scale-dependent surface tension of the contacting liquid. This behavior has already been described for scattering experiments taking into account capillary waves on the liquid surface induced by temperature and had been predicted earlier by theoretical calculations. However, the investigation of model surfaces requires the provision of suitable precursor molecules, which are not commercially available and opens up a door to the exotic chemistry of fluoro-organic materials. During the course of this work, the synthesis of long-chain precursors is examined with a particular focus put on oligomerically pure semi-fluorinated n-alkyl thiols and n-alkyl trichlorosilanes. For this, general protocols for the syntheses of the desired compounds are developed and product mixtures are assayed to be separated into fractions of individual chain lengths by fluorous-phase high-performance liquid chromatography (F-HPLC). The transition from model systems to technically more relevant surfaces and applications is initiated through the deposition of SAMs from long-chain fluorinated n-alkyl trichlorosilanes. Depositions are accomplished by a vapor-phase deposition process conducted on a pilot-scale set-up, which enables the exact control of relevant process parameters. Thus, the influence of varying deposition conditions on the properties of the final coating is examined and analyzed for the most important parameters. The strongest effect is observed for the partial pressure of reactive water vapor, which directly controls the extent of precursor hydrolysis during the deposition process. Experimental results propose that the formation of ordered monolayers rely on the amount of hydrolyzed silanol species present in the deposition system irrespective of the exact grade of hydrolysis. However, at increased amounts of species which are able to form cross-linked molecules due to condensation reactions, films deteriorate in quality. This effect is assumed to be caused by the introduction of defects within the film and the adsorption of cross linked agglomerates. Deposition conditions are also investigated for chain extended precursor species and reveal distinct differences caused by chain elongation. N2 - "How Wenzel and Cassie were wrong" - so lautete der Aufsehen erregende Titel eines 2007 von Lichao Gao und Thomas McCarthy veröffentlichten Artikels, in dem grundlegende Beschreibungen des Benetzungsverhaltens von Flüssigkeiten in Frage gestellt wurden. Die Autoren leiteten damit eine Diskussion über ein bereits lange als allgemein anerkannt angesehenes Thema ein und sie zeigten, dass Benetzungsphänomene nicht so vollständig aufgeklärt waren, wie zuvor angenommen. In ähnlicher Weise versucht diese Arbeit, einen Schwerpunkt auf bestimmte Aspekte der Flüssigkeitsbenetzung zu legen, die bisher in Bezug auf die Interpretation und den experimentellen Nachweis weitgehend vernachlässigt wurden. Während der Einfluss der Oberflächenrauigkeit auf das makroskopisch beobachtete Benetzungsverhalten nach den bekannten Modellen von Wenzel und Cassie/Baxter allgemein anerkannt ist, war die Größenordnung der Strukturen, die für die raue Textur der Oberfläche verantwortlich sind, nicht Gegenstand weiterer Betrachtungen. Analog dazu sind die Grenzen dieser Modelle bislang nicht beschrieben und untersucht worden. Daher stellt sich die Frage, was passiert, wenn die Größe der Oberflächenstrukturen auf die Größe der benetzenden Flüssigkeitsmoleküle reduziert wird. Sind gängige Methoden und Modelle noch gültig oder können Abweichungen vom makroskopischen Verhalten beobachtet werden? Die vorliegende Arbeit will einen Ausgangspunkt zu diesen Fragen schaffen. Um den Einfluss kleinster Oberflächenstrukturen auf die Flüssigkeitsbenetzung zu untersuchen, wird hierbei ein geeignetes Modellsystem selbstassemblierender Monolagen (self-assembled monolayers, SAM) aus (fluor-)organischen Thiolen unterschiedlicher Alkylkettenlänge entwickelt. Es entstehen Oberflächen-topographien, die auf Größenunterschieden von einigen Ångström beruhen und in Abhängigkeit von der Wahl des einzelnen Präkursorsystems ein überraschendes Benetzungsverhalten zeigen. So werden Kontaktwinkel gemessen, die erheblich von theoretischen Berechnungen auf der Basis von Wenzel- und Cassie/Baxter-Modellen abweichen und die bestätigen, dass bereits Oberflächentopographien im sub-nm-Bereich die Benetzung beeinflussen. Darüber hinaus wird gezeigt, dass experimentell ermittelte Benetzungseigenschaften gut mit einer angenommenen skalenabhängigen Oberflächenspannung der Kontaktflüssigkeit korrelieren. Dieses Verhalten wurde bereits für Streuexperimente unter Berücksichtigung von temperaturinduzierten Kapillarwellen auf der Flüssigkeitsoberfläche beschrieben und war zuvor durch theoretische Berechnungen vorhergesagt worden. Die Untersuchung der Modelloberflächen erfordert jedoch die Bereitstellung geeigneter Vorläufermoleküle, die kommerziell nicht erhältlich sind und eine Tür zur Chemie der fluororganischen Materialien öffnen. Im Rahmen dieser Arbeit wird die Synthese langkettiger Präursoren untersucht, wobei ein besonderer Schwerpunkt auf oligomerenreine, semifluorierte n-Alkylthiole und n Alkyltrichlorsilane gelegt wird. Dazu werden allgemeine Protokolle für die Synthesen der gewünschten Verbindungen entwickelt und Produktmischungen untersucht, um sie mit Hilfe der Fluorphasen-Hochleistungsflüssigkeitschromatographie (F-HPLC) in Fraktionen einzelner Kettenlängen aufzutrennen. Der Übergang von Modellsystemen zu technisch relevanteren Oberflächen und Anwendungen wird durch die Abscheidung von SAMs aus langkettigen fluorierten n Alkyltrichlorsilanen eingeleitet. Die Beschichtung erfolgt durch eine chemische Dampfphasenabscheidung (chemical vapor deposition, CVD), die die gezielte Steuerung und Kontrolle relevanter Prozessparameter ermöglicht. So wird der Einfluss unterschiedlicher Abscheidungsbedingungen auf die Eigenschaften der Beschichtung untersucht und für die wichtigsten Parameter analysiert. Die stärkste Wirkung wird für den Partialdruck des reaktiven Wasserdampfes beobachtet, der das Ausmaß der Hydrolyse der Präkursoren während des Abscheidungsprozesses direkt beeinflusst. Experimentelle Ergebnisse legen nahe, dass die Bildung geordneter Monolagen von der Menge der im Abscheidungssystem vorhandenen hydrolysierten Silanolspezies abhängt, unabhängig vom genauen Hydrolysegrad. Mit zunehmender Anzahl kondensierbarer Spezies, die in der Lage sind vernetzte Moleküle zu bilden, verschlechtern sich die Filme jedoch in ihrer Qualität. Es wird angenommen, dass dieser Effekt durch die Entstehung von Defekten innerhalb des Films und die Adsorption von vernetzten Agglomeraten verursacht wird. Die Abscheidebedingungen werden auch für kettenverlängerte Präkursoren untersucht. T2 - Synthese hochfluorierter Präkursoren und deren Abscheidebedingungen für selbstassemblierende Monolagen mit definierten kleinskaligen Oberflächenstrukturen als Modellsysteme für die Manipulation von Benetzungsverhalten KW - wetting KW - self-assembled monolayers KW - surface topography KW - hydrophobicity KW - Benetzung KW - selbstassemblierende Monolagen KW - Oberflächentopografie KW - Hydrophobizität KW - fluorous chemistry KW - Fluorchemie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473804 ER - TY - THES A1 - Heinig, Peter T1 - The geometry of interacting liquid domains in Langmuir monolayers N2 - Es werden die Strukturbildung und Benetzung zweidimensionaler (2D) Phasen von Langmuir-Monolagen im lokalen thermodynamischen Gleichgewicht untersucht. Eine Langmuir-Monolage ist ein isoliertes 2D System von Surfaktanten an der Wasser/Luft-Grenzfläche, in dem kristalline, flüssigkristalline, flüssige oder gasförmige Phasen auftreten, die sich in Positionsordnung und/oder Orientierungsordnung unterscheiden. Permanente elektrische Dipolmomente der Surfaktanten führen zu einer langreichweitigen repulsiven Selbstwechselwirkung der Monolage und zur Bildung mesoskopischer Strukturen. Es wird ein Wechselwirkungsmodell verwendet, das die Strukturbildung als Wechselspiel kurzreichweitiger Anziehung (nackte Linienspannung) und langreichweitiger Abstoßung (Oberflächenpotential) auf einer Skala Delta beschreibt. Physikalisch trennt Delta die beiden Längenskalen der lang- und kurzreichweitigen Wechselwirkung. In dieser Arbeit werden die thermodynamischen Stabilitätsbedingungen für die Form einer Phasengrenzlinie (Young-Laplace-Gleichung) und Dreiphasenkontaktpunkt (Young-Bedingung) hergeleitet und zur Beschreibung experimenteller Daten genutzt: Die Linienspannung benetzender 2D Tropfen wird mit Hilfe hängender-Tropfen-Tensiometrie gemessen. Die Blasenform und -größe von 2D Schäumen wird theoretisch modelliert und mit experimentellen 2D Schäumen verglichen. Kontaktwinkel werden durch die Anpassung von experimentellen Tropfen mit numerischen Lösungen der Young-Laplace-Gleichung auf Mikrometerskalen gemessen. Das Skalenverhalten des Kontaktwinkels ermöglicht die Bestimmung einer unteren Schranke von Delta. Weiterhin wird diskutiert, inwieweit das Schalten von 2D Benetzungsmodi in biologischen Membranen zur Steuerung der Reaktionskinetik ein Rolle spielen könnte. Hierzu werden Experimente aus unserer Gruppe, die in einer Langmuir-Monolage durchgeführt wurden, herangezogen. Abschließend wird die scheinbare Verletzung der Gibbs′schen Phasenregel in Langmuir-Monolagen (nicht-horizontales Plateau der Oberflächendruck-Fläche Isotherme, ausgedehntes Dreiphasengebiet in Einkomponentensystemen) quantitativ untersucht. Eine Verschmutzung der verwendeten Substanzen ist demnach die wahscheinlichste Erklärung, während Finite-Size-Effekte oder der Einfluss der langreichweitigen Elektrostatik die Größenordnung des Effektes nicht beschreiben können. N2 - The present work investigates the structure formation and wetting in two dimensional (2D) Langmuir monolayer phases in local thermodynamic equilibrium. A Langmuir monolayer is an isolated 2D system of surfactants at the air/water interface. It exhibits crystalline, liquid crystalline, liquid and gaseous phases differing in positional and/or orientational order. Permanent electric dipole moments of the surfactants lead to a long range repulsive interaction and to the formation of mesoscopic patterns. An interaction model is used describing the structure formation as a competition between short range attraction (bare line tension) and long range repulsion (surface potentials) on a scale Delta. Delta has the meaning of a dividing length between the short and long range interaction. In the present work the thermodynamic equilibrium conditions for the shape of two phase boundary lines (Young-Laplace equation) and three phase intersection points (Young′s condition) are derived and applied to describe experimental data: The line tension is measured by pendant droplet tensiometry. The bubble shape and size of 2D foams is calculated numerically and compared to experimental foams. Contact angles are measured by fitting numerical solutions of the Young-Laplace equation on micron scale. The scaling behaviour of the contact angle allows to measure a lower limit for Delta. Further it is discussed, whether in biological membranes wetting transitions are a way in order to control reaction kinetics. Studies performed in our group are discussed with respect to this question in the framework of the above mentioned theory. Finally the apparent violation of Gibbs′ phase rule in Langmuir monolayers (non-horizontal plateau of the surface pressure/area-isotherm, extended three phase coexistence region in one component systems) is investigated quantitatively. It has been found that the most probable explanation are impurities within the system whereas finite size effects or the influence of the long range electrostatics can not explain the order of magnitude of the effect. KW - Langmuir KW - Monolage KW - 2D KW - langreichweitig KW - Benetzung KW - Schäume KW - Phasenregel KW - Langmuir monolayer KW - 2D KW - long range KW - wetting KW - foams KW - phase rule Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000814 ER -