TY - THES A1 - Schuck, Bernhard T1 - Geomechanical and petrological characterisation of exposed slip zones, Alpine Fault, New Zealand T1 - Geomechanische und petrologische Charakterisierung aufgeschlossener Gleithorizonte, Alpine Fault, Neuseeland N2 - The Alpine Fault is a large, plate-bounding, strike-slip fault extending along the north-western edge of the Southern Alps, South Island, New Zealand. It regularly accommodates large (MW > 8) earthquakes and has a high statistical probability of failure in the near future, i.e., is late in its seismic cycle. This pending earthquake and associated co-seismic landslides are expected to cause severe infrastructural damage that would affect thousands of people, so it presents a substantial geohazard. The interdisciplinary study presented here aims to characterise the fault zone’s 4D (space and time) architecture, because this provides information about its rheological properties that will enable better assessment of the hazard the fault poses. The studies undertaken include field investigations of principal slip zone fault gouges exposed along strike of the fault, and subsequent laboratory analyses of these outcrop and additional borehole samples. These observations have provided new information on (I) characteristic microstructures down to the nanoscale that indicate which deformation mechanisms operated within the rocks, (II) mineralogical information that constrains the fault’s geomechanical behaviour and (III) geochemical compositional information that allows the influence of fluid- related alteration processes on material properties to be unraveled. Results show that along-strike variations of fault rock properties such as microstructures and mineralogical composition are minor and / or do not substantially influence fault zone architecture. They furthermore provide evidence that the architecture of the fault zone, particularly its fault core, is more complex than previously considered, and also more complex than expected for this sort of mature fault cutting quartzofeldspathic rocks. In particular our results strongly suggest that the fault has more than one principal slip zone, and that these form an anastomosing network extending into the basement below the cover of Quaternary sediments. The observations detailed in this thesis highlight that two major processes, (I) cataclasis and (II) authigenic mineral formation, are the major controls on the rheology of the Alpine Fault. The velocity-weakening behaviour of its fault gouge is favoured by abundant nanoparticles promoting powder lubrication and grain rolling rather than frictional sliding. Wall-rock fragmentation is accompanied by co-seismic, fluid-assisted dilatancy that is recorded by calcite cementation. This mineralisation, along with authigenic formation of phyllosilicates, quickly alters the petrophysical fault zone properties after each rupture, restoring fault competency. Dense networks of anastomosing and mutually cross-cutting calcite veins and intensively reworked gouge matrix demonstrate that strain repeatedly localised within the narrow fault gouge. Abundantly undeformed euhedral chlorite crystallites and calcite veins cross-cutting both fault gouge and gravels that overlie basement on the fault’s footwall provide evidence that the processes of authigenic phyllosilicate growth, fluid-assisted dilatancy and associated fault healing are processes active particularly close to the Earth’s surface in this fault zone. Exposed Alpine Fault rocks are subject to intense weathering as direct consequence of abundant orogenic rainfall associated with the fault’s location at the base of the Southern Alps. Furthermore, fault rock rheology is substantially affected by shallow-depth conditions such as the juxtaposition of competent hanging wall fault rocks on poorly consolidated footwall sediments. This means microstructural, mineralogical and geochemical properties of the exposed fault rocks may differ substantially from those at deeper levels, and thus are not characteristic of the majority of the fault rocks’ history. Examples are (I) frictionally weak smectites found within the fault gouges being artefacts formed at temperature conditions, and imparting petrophysical properties that are not typical for most of fault rocks of the Alpine Fault, (II) grain-scale dissolution resulting from subaerial weathering rather than deformation by pressure-solution processes and (III) fault gouge geometries being more complex than expected for deeper counterparts. The methodological approaches deployed in analyses of this, and other fault zones, and the major results of this study are finally discussed in order to contextualize slip zone investigations of fault zones and landslides. Like faults, landslides are major geohazards, which highlights the importance of characterising their geomechanical properties. Similarities between faults, especially those exposed to subaerial processes, and landslides, include mineralogical composition and geomechanical behaviour. Together, this ensures failure occurs predominantly by cataclastic processes, although aseismic creep promoted by weak phyllosilicates is not uncommon. Consequently, the multidisciplinary approach commonly used to investigate fault zones may contribute to increase the understanding of landslide faulting processes and the assessment of their hazard potential. N2 - Die Alpine Fault ist eine große Plattengrenze mit lateralem Versatz, die sich entlang des nordwestlichen Fußes der Südalpen, Südinsel Neuseeland, erstreckt. Regelmäßig ereignen sich große (MW > 8) Erdbeben und gegenwärtig befindet sich die Störung am Ende ihres Erdbebenzyklus, so dass ein baldiges Beben sehr wahrscheinlich ist. Die Alpine Fault stellt eine bedeutende Naturgefahr dar und so wird davon ausgegangen, dass tausende Menschen von dem anstehenden Erdbeben, ko-seismischen Hangrutschungen und den damit einhergehenden großen Schäden an der Infrastruktur betroffen sein werden. Daher zielt die hier vorgestellte interdisziplinäre Studie darauf ab, den Aufbau der Störungszone in 4D (räumlich und zeitlich) zu charakterisieren, weil dies Aufschluss über ihre rheologischen Eigenschaften liefert und damit einen Beitrag zur Einschätzung der von der Störung ausgehenden Gefahr leisten wird. Die durchgeführten Arbeiten umfassen Felduntersuchungen der entlang der Störung aufge- schlossenen Hauptscherzone und sich daran anschließende Laboruntersuchungen dieser Auf- schluss- und zusätzlicher Bohrlochproben. Diese geben Aufschluss über (I) charakteristis- che Mikrostrukturen bis in den Nanometerbereich, was erlaubt Deformationsmechanismen abzuleiten, (II) die Mineralogie und ihren Einfluss auf das geomechanische Verhalten und (III) die geochemische Zusammensetzung, die es ermöglicht, den Einfluss fluid-bezogener Alterationsprozesse auf Materialeigenschaften besser zu verstehen. Die Ergebnisse zeigen, dass Variationen der Eigenschaften der Störungsgesteine, wie Mikrostrukturen und mineralogische Zusammensetzung, entlang der Störung nur untergeord- net auftreten und den Aufbau der Störungszone nicht oder nur unwesentlich beeinflussen. Darüber hinaus zeigen sie, dass der Aufbau der Störungszone, vor allem ihres Kerns, komplexer ist als bisher angenommen. Dies ist unerwartet für eine Störung in quartz- und feldspatreichem Gestein dieses Alters. Diese Sicht wird von Ergebnissen gestützt, die nahelegen, dass die Störung mehr als eine Hauptscherzone hat und dass diese ein anastomisierendes Netzwerk bilden, das sich bis in das Festgestein unterhalb der Deckschicht aus quartären Sedimenten erstreckt. Die Beobachtungen dieser Arbeit zeigen, dass zwei Prozesse, (I) Kataklase und (II) au- thigenes Mineralwachstum, den größten Einfluss auf die Rheologie der Alpine Fault haben. Das “velocity-weakening”-Verhalten der Hauptscherzonen und ihres Gesteinsmehls wird durch die große Anzahl von Nanopartikeln begünstigt, die das Rollen der Partikel zu Ungunsten von Gleitreibungsrutschen fördern. Die Zerstückelung des Umgebungsgesteins geht mit ko- seismischer, fluid-unterstützter Dilatanz einher, die die anschließende Zementierung durch Kalzit begünstigt. Diese, in Kombination mit authigenen Schichtsilikaten, stellt die petro- physikalischen Eigenschaften der Störungszone nach jedem Erdbeben schnell wieder her. Dichte Netzwerke anastomisierender und sich gegenseitig durchschlagender Kalzitadern und umfassend aufgearbeitetes Gesteinsmehl belegen, dass Verformung wiederholt in den dünnen Hauptscherbahnen lokalisiert wurde. Kalzitadern durschlagen sowohl das Gesteinsmehl der Hauptscherbahnen als auch das Geröll, das die oberflächennahe Sedimentabdeckung des Festgesteins im Liegenden darstellt. Dies und allgegenwärtige, undeformierte, euhedrale Chlorit-Kristalle belegen, dass authigenes Schichtsilikatwachstum, fluid-unterstütze Dilatanz und das damit einhergehende Heilen der Störung Prozesse sind, die auch nahe der Erdoberfläche wirken. Freigelegte Gesteine der Alpine Fault sind intensiver Verwitterung als direkter Folge des reichlich vorhandenen Steigungsregens, der sich aus der Lage der Störung am Fuß der Südalpen ergibt, ausgesetzt. Darüber hinaus wird die Rheologie der Störungsgesteine erheblich durch oberflächennahen Randbedingungen wie die Gegenüberstellung kompetenter Störungsgesteine des Hangenden mit wenig-konsolidierten Sedimenten des Liegenden beeinflusst. Dies hat zur Folge, dass sich mikrostrukturelle, mineralogische und geochemische Eigenschaften der freigelegten Störungsgesteine erheblich von denen in größeren Tiefen unterscheiden können und folglich nicht charakteristisch für den Großteil der Deformationsgeschichte sind. Beispiele hierfür sind (I) Smektitphasen in den Hauptscherzonen, die einen niedrigen Reibungskoeffizien- ten aufweisen, allerdings Artefakte von für die Mehrheit der Gesteine dieser Störung atypischer Temperaturen und petrophysikalischer Eigenschaften sind, (II) angelöste Minerale als Ergebnis oberflächennaher Verwitterung und nicht von Drucklösung und (III) ein interner Aufbau des Gesteinsmehls der Hauptscherbahnen, der komplexerer ist, als dies für das Äquivalent in größerer Tiefe zu erwarten wäre. Schließlich werden die Ergebnisse dieser Arbeit gemeinsam mit den Hauptbefunden und methodischen Ansätzen anderer Studien zu Störungszonen diskutiert und in Kontext zu Analysen von Scherzonen in Störungen und Hangrutschungen gestellt. Hangrutschungen sind, wie Störungen, bedeutende Naturgefahren, was die Notwendigkeit, ihre geomechanischen Eigenschaften zu charakterisieren, herausstreicht. Störungen, vor allem jene, die Ober- flächenprozessen ausgesetzt sind, und Hangrutschungen teilen viele Gemeinsamkeiten wie mineralogische Zusammensetzung und geomechanisches Verhalten, was vor allem zu Versagen mittels kataklastischer Mechanismen führt; allerdings ist aseismisches Kriechen, befördert durch Schichtsilikate mit niedrigem Reibungskoeffizienten, nicht ungewöhnlich. Folglich könnte der multidisziplinäre Ansatz, der in der Regel zur Untersuchung von Störungszonen herangezogen wird, dazu beitragen das Verständnis von Hangrutschungen zu verbessern und ihr Gefährdungspotential abzuschätzen. KW - Alpine Fault KW - fluid rock interaction KW - microstructures KW - fault healing KW - authigenic mineral formation KW - brittle deformation KW - fault zone architecture KW - strain localization KW - landslides KW - faults KW - mineral composition KW - deformation mechanisms KW - Alpine Fault KW - Fluid-Gesteins-Wechselwirkung KW - Mikrostrukturen KW - Fault Healing KW - authigene Mineralbildung KW - spröde Deformation KW - Störungszonenarchitektur KW - Lokalisierung von Verformung KW - Erdrutsche KW - Verwerfungen KW - Mineralzusammensetzung KW - Deformationsmechanismen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446129 ER - TY - THES A1 - Behm, Laura Vera Johanna T1 - Thermoresponsive Zellkultursubstrate für zeitlich-räumlich gesteuertes Auswachsen neuronaler Zellen T1 - Thermoresponsive cell culture substrates for spatio-temporal controlled outgrowth of neuronal cells N2 - Ein wichtiges Ziel der Neurowissenschaften ist das Verständnis der komplexen und zugleich faszinierenden, hochgeordneten Vernetzung der Neurone im Gehirn, welche neuronalen Prozessen, wie zum Beispiel dem Wahrnehmen oder Lernen wie auch Neuropathologien zu Grunde liegt. Für verbesserte neuronale Zellkulturmodelle zur detaillierten Untersuchung dieser Prozesse ist daher die Rekonstruktion von geordneten neuronalen Verbindungen dringend erforderlich. Mit Oberflächenstrukturen aus zellattraktiven und zellabweisenden Beschichtungen können neuronale Zellen und ihre Neuriten in vitro strukturiert werden. Zur Kontrolle der neuronalen Verbindungsrichtung muss das Auswachsen der Axone zu benachbarten Zellen dynamisch gesteuert werden, zum Beispiel über eine veränderliche Zugänglichkeit der Oberfläche. In dieser Arbeit wurde untersucht, ob mit thermoresponsiven Polymeren (TRP) beschichtete Zellkultursubstrate für eine dynamische Kontrolle des Auswachsens neuronaler Zellen geeignet sind. TRP können über die Temperatur von einem zellabweisenden in einen zellattraktiven Zustand geschaltet werden, womit die Zugänglichkeit der Oberfläche für Zellen dynamisch gesteuert werden kann. Die TRP-Beschichtung wurde mikrostrukturiert, um einzelne oder wenige neuronale Zellen zunächst auf der Oberfläche anzuordnen und das Auswachsen der Zellen und Neuriten über definierte TRP-Bereiche in Abhängigkeit der Temperatur zeitlich und räumlich zu kontrollieren. Das Protokoll wurde mit der neuronalen Zelllinie SH-SY5Y etabliert und auf humane induzierte Neurone übertragen. Die Anordnung der Zellen konnte bei Kultivierung im zellabweisenden Zustand des TRPs für bis zu 7 Tage aufrecht erhalten werden. Durch Schalten des TRPs in den zellattraktiven Zustand konnte das Auswachsen der Neuriten und Zellen zeitlich und räumlich induziert werden. Immunozytochemische Färbungen und Patch-Clamp-Ableitungen der Neurone demonstrierten die einfache Anwendbarkeit und Zellkompatibilität der TRP-Substrate. Eine präzisere räumliche Kontrolle des Auswachsens der Zellen sollte durch lokales Schalten der TRP-Beschichtung erreicht werden. Dafür wurden Mikroheizchips mit Mikroelektroden zur lokalen Jouleschen Erwärmung der Substratoberfläche entwickelt. Zur Evaluierung der generierten Temperaturprofile wurde eine Temperaturmessmethode entwickelt und die erhobenen Messwerte mit numerisch simulierten Werten abgeglichen. Die Temperaturmessmethode basiert auf einfach zu applizierenden Sol-Gel-Schichten, die den temperatursensitiven Fluoreszenzfarbstoff Rhodamin B enthalten. Sie ermöglicht oberflächennahe Temperaturmessungen in trockener und wässriger Umgebung mit hoher Orts- und Temperaturauflösung. Numerische Simulationen der Temperaturprofile korrelierten gut mit den experimentellen Daten. Auf dieser Basis konnten Geometrie und Material der Mikroelektroden hinsichtlich einer lokal stark begrenzten Temperierung optimiert werden. Ferner wurden für die Kultvierung der Zellen auf den Mikroheizchips eine Zellkulturkammer und Kontaktboard für die elektrische Kontaktierung der Mikroelektroden geschaffen. Die vorgestellten Ergebnisse demonstrieren erstmalig das enorme Potential thermoresponsiver Zellkultursubstrate für die zeitlich und räumlich gesteuerte Formation geordneter neuronaler Verbindungen in vitro. Zukünftig könnte dies detaillierte Studien zur neuronalen Informationsverarbeitung oder zu Neuropathologien an relevanten, humanen Zellmodellen ermöglichen. N2 - An important goal of neurosciences is to understand the fascinating, complex and highly ordered neuronal circuits of the brain that are underlying important neuronal processes such as learning and memory, as well as neuropathologies. For detailed studies of these processes improved neuronal cell culture models that allow a reconstruction of ordered neuronal connections are crucial. Neuronal cells can be patterned in vitro with structured surface coatings of cell repellent and cell attractive substances. For controlling also the direction of neuronal cell connections the outgrowth of the axons towards neighbouring cells needs to be dynamically controlled, which can be achieved for example by surface structures that can be changed due to switchable surface properties. The main goal of this work was to explore if cell culture substrates with coatings of thermoresponsive polymer (TRP) are suitable for dynamically controlling the outgrowth of neuronal cells. TRPs can be switched via temperature between a cell repellent and a cell attractive state, which enables a dynamic change of surface properties. The TRP coating was microstructured in order to pattern neuronal cells and to spatio-temporally control the outgrowth of cells and neurites across defined TRP-coated areas in dependence of the temperature. The protocol was established with the neuronal cell line SH-SY5Y and transferred to human induced neuronal cells. The cell patterns could be maintained for up to 7 days of cultivation when the TRP was kept in the cell repellent state. By switching the TRP to the cell attractive state the outgrowth of neurites and cells was induced at defined time points and areas. Immunocytochemical staining and patch-clamp recordings of the neurons demonstrated the cell compatibility and easy applicability of these TRP-substrates. A more precise spatial control of the outgrowth of cells should be further achieved by local switching of the TRP-coating. Therefore, microheaters comprising microelectrodes were developed for locally heating the substrate surface. For evaluation of the generated temperature profiles a thermometry method was developed and the values obtained were correlated with numerically simulated data. The thermometry method is based on easily applicable sol-gel-films containing the temperature-sensitive fluorophore Rhodamine B. It allows temperature measurements close to the surface under both dry and liquid conditions with high resolution regarding space (lower µm-range) and temperature (≤ 1°C). Numerical simulations of the temperature profiles correlated well with experimental data. On this basis geometry and material of the microelectrodes were optimized with regard to locally restricted temperature changes. Furthermore, a chip environment for cultivating the cells on the microheater chips was developed comprising a cell culture chamber and a contact board for electrically contacting the microelectrodes. The results presented in this work demonstrate for the first time the great potential of thermoresponsive cell culture substrates for a spatio-temporally controlled formation of neuronal connections in vitro. In future this could facilitate detailed studies of information processing in neuronal networks or of neuropathologies using relevant human neuronal cell models. KW - neuronale Netzwerke KW - Mikrostrukturierung KW - Neuritenwachstum KW - thermoresponsive Polymere KW - Lab-on-a-chip KW - Rhodamin B KW - Thermometrie KW - Mikroheizung KW - Oberflächentemperatur KW - Sol-Gel KW - Zelladhäsionskontrolle KW - neuronal networks KW - microstructures KW - neurite outgrowth KW - thermoresponsive polymers KW - lab-on-a-chip KW - Rhodamine B KW - thermometry KW - microheating KW - surface temperature KW - sol-gel KW - cell adhesion control Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436196 ER -