TY - THES A1 - Teichmann, Erik T1 - Partial synchronization in coupled systems with repulsive and attractive interaction T1 - Partielle Synchronisation in Gekoppelten System mit Abstoßender und Anziehender Wechselwirkung N2 - Partial synchronous states exist in systems of coupled oscillators between full synchrony and asynchrony. They are an important research topic because of their variety of different dynamical states. Frequently, they are studied using phase dynamics. This is a caveat, as phase dynamics are generally obtained in the weak coupling limit of a first-order approximation in the coupling strength. The generalization to higher orders in the coupling strength is an open problem. Of particular interest in the research of partial synchrony are systems containing both attractive and repulsive coupling between the units. Such a mix of coupling yields very specific dynamical states that may help understand the transition between full synchrony and asynchrony. This thesis investigates partial synchronous states in mixed-coupling systems. First, a method for higher-order phase reduction is introduced to observe interactions beyond the pairwise one in the first-order phase description, hoping that these may apply to mixed-coupling systems. This new method for coupled systems with known phase dynamics of the units gives correct results but, like most comparable methods, is computationally expensive. It is applied to three Stuart-Landau oscillators coupled in a line with a uniform coupling strength. A numerical method is derived to verify the analytical results. These results are interesting but give importance to simpler phase models that still exhibit exotic states. Such simple models that are rarely considered are Kuramoto oscillators with attractive and repulsive interactions. Depending on how the units are coupled and the frequency difference between the units, it is possible to achieve many different states. Rich synchronization dynamics, such as a Bellerophon state, are observed when considering a Kuramoto model with attractive interaction in two subpopulations (groups) and repulsive interactions between groups. In two groups, one attractive and one repulsive, of identical oscillators with a frequency difference, an interesting solitary state appears directly between full and partial synchrony. This system can be described very well analytically. N2 - Partiell synchronisierte Zustände existieren zwischen voller Synchronisation und Asynchronie, in Systemen von gekoppelten Oszillatoren. Das Verständnis von partieller Synchronisation ist ein wichtiger Forschungszweig, da sie viele dynamische Zustände enthalten. Sie werden oft mithilfe von Phasendynamiken untersucht. Das ist jedoch ein Nachteil, da Phasendynamiken für gewöhnlich nur im Grenzfall von schwacher Kopplung, also einer Näherung in erster Ordnung der Kopplungsstärke, betrachtet werden. Die Verallgemeinerung zu höheren Ordnungen ist weiterhin ein offenes Problem. Systeme mit anziehender und abstoßender Kopplung zwischen den einzelnen Oszillatoren sind von speziellem Interesse in der Erforschung von partieller Synchronisation. Solch eine Mischung aus Kopplungsstärken führt zu bestimmten dynamischen Zuständen, die den Übergang von Synchronisation zu Asynchronie erklären könnten. Diese Arbeit untersucht solche Zustände in Systemen mit gemischten Kopplungsstärken. Zuerst wird eine neue Methode zur Bestimmung von Phasendynamiken in höheren Ordnungen eingeführt. Sie betrachtet mehr Kopplungsterme, als die einfachen paarweisen Interaktionen die in der ersten Ordnung der Kopplungsstärke auftreten, in der Hoffnung, dass diese Methode auch auf Systeme mit gemischter Kopplung anwendbar ist. Die neue Methode für Oszillatoren mit einer bekannten Phasendynamik, führt zu den richtigen Ergebnissen, ist aber aufwendig zu berechnen. Die Methode wird auf drei, in einer Linie gekoppelten, Stuart-Landau Oszillatoren angewendet. Eine numerische Methode wird abgeleitet, um die analytischen Ergebnisse zu verifizieren. Diese Ergebnisse sind interessant, aber durch die benötigte hohe Rechenleistung ist es weiterhin vorteilhaft einfachere Phasenmodelle zu untersuchen, die exotischere Zustände erreichen. Solch ein einfaches Model, das eher selten Beachtung findet, ist das Kuramoto Model mit anziehender und abstoßender Kopplung. Abhängig davon, wie die Oszillatoren gekoppelt und wie die Frequenzunterschiede zwischen den einzelnen Oszillatoren sind, ist es möglich viele verschiedene Zustände zu erreichen. Interessante Synchronisierungsdynamiken werden erreicht, wie zum Beispiel der Bellerophon Zustand, wenn ein Kuramoto Model mit zwei Gruppen, mit anziehender Kopplung innerhalb der Gruppen und abstoßender Kopplung zwischen den Gruppen, untersucht wird. Bei zwei Gruppen, eine anziehend und eine abstoßend, von identischen Oszillatoren mit einem Frequenzunterschied zwischen den Gruppen, wird ein interessanter solitärer Zustand beobachtet. Er befindet sich direkt am Übergang zwischen Synchronisation und partieller Synchronisation. Solch ein System ist sehr gut analytisch beschreibbar. KW - Synchronization KW - Dynamical Systems KW - Coupled Systems KW - gekoppelte System KW - dynamische Systeme KW - Synchronisation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-528943 ER - TY - THES A1 - Peter, Franziska T1 - Transition to synchrony in finite Kuramoto ensembles T1 - Synchronisationsübergang in endlichen Kuramoto-Ensembles N2 - Synchronisation – die Annäherung der Rhythmen gekoppelter selbst oszillierender Systeme – ist ein faszinierendes dynamisches Phänomen, das in vielen biologischen, sozialen und technischen Systemen auftritt. Die vorliegende Arbeit befasst sich mit Synchronisation in endlichen Ensembles schwach gekoppelter selbst-erhaltender Oszillatoren mit unterschiedlichen natürlichen Frequenzen. Das Standardmodell für dieses kollektive Phänomen ist das Kuramoto-Modell – unter anderem aufgrund seiner Lösbarkeit im thermodynamischen Limes unendlich vieler Oszillatoren. Ähnlich einem thermodynamischen Phasenübergang zeigt im Fall unendlich vieler Oszillatoren ein Ordnungsparameter den Übergang von Inkohärenz zu einem partiell synchronen Zustand an, in dem ein Teil der Oszillatoren mit einer gemeinsamen Frequenz rotiert. Im endlichen Fall treten Fluktuationen auf. In dieser Arbeit betrachten wir den bisher wenig beachteten Fall von bis zu wenigen hundert Oszillatoren, unter denen vergleichbar starke Fluktuationen auftreten, bei denen aber ein Vergleich zu Frequenzverteilungen im unendlichen Fall möglich ist. Zunächst definieren wir einen alternativen Ordnungsparameter zur Feststellung einer kollektiven Mode im endlichen Kuramoto-Modell. Dann prüfen wir die Abhängigkeit des Synchronisationsgrades und der mittleren Rotationsfrequenz der kollektiven Mode von Eigenschaften der natürlichen Frequenzverteilung für verschiedene Kopplungsstärken. Wir stellen dabei zunächst numerisch fest, dass der Synchronisationsgrad stark von der Form der Verteilung (gemessen durch die Kurtosis) und die Rotationsfrequenz der kollektiven Mode stark von der Asymmetrie der Verteilung (gemessen durch die Schiefe) der natürlichen Frequenzen abhängt. Beides können wir im thermodynamischen Limes analytisch verifizieren. Mit diesen Ergebnissen können wir Erkenntnisse anderer Autoren besser verstehen und verallgemeinern. Etwas abseits des roten Fadens dieser Arbeit finden wir außerdem einen analytischen Ausdruck für die Volumenkontraktion im Phasenraum. Der zweite Teil der Arbeit konzentriert sich auf den ordnenden Effekt von Fluktuationen, die durch die Endlichkeit des Systems zustande kommen. Im unendlichen Modell sind die Oszillatoren eindeutig in kohärent und inkohärent und damit in geordnet und ungeordnet getrennt. Im endlichen Fall können die auftretenden Fluktuationen zusätzliche Ordnung unter den asynchronen Oszillatoren erzeugen. Das grundlegende Prinzip, die rauschinduzierte Synchronisation, ist aus einer Reihe von Publikationen bekannt. Unter den gekoppelten Oszillatoren nähern sich die Phasen aufgrund der Fluktuationen des Ordnungsparameters an, wie wir einerseits direkt numerisch zeigen und andererseits mit einem Synchronisationsmaß aus der gerichteten Statistik zwischen Paaren passiver Oszillatoren nachweisen. Wir bestimmen die Abhängigkeit dieses Synchronisationsmaßes vom Verhältnis von paarweiser natürlicher Frequenzdifferenz zur Varianz der Fluktuationen. Dabei finden wir eine gute Übereinstimmung mit einem einfachen analytischen Modell, in welchem wir die deterministischen Fluktuationen des Ordnungsparameters durch weißes Rauschen ersetzen. N2 - Synchronization – the adjustment of rhythms among coupled self-oscillatory systems – is a fascinating dynamical phenomenon found in many biological, social, and technical systems. The present thesis deals with synchronization in finite ensembles of weakly coupled self-sustained oscillators with distributed frequencies. The standard model for the description of this collective phenomenon is the Kuramoto model – partly due to its analytical tractability in the thermodynamic limit of infinitely many oscillators. Similar to a phase transition in the thermodynamic limit, an order parameter indicates the transition from incoherence to a partially synchronized state. In the latter, a part of the oscillators rotates at a common frequency. In the finite case, fluctuations occur, originating from the quenched noise of the finite natural frequency sample. We study intermediate ensembles of a few hundred oscillators in which fluctuations are comparably strong but which also allow for a comparison to frequency distributions in the infinite limit. First, we define an alternative order parameter for the indication of a collective mode in the finite case. Then we test the dependence of the degree of synchronization and the mean rotation frequency of the collective mode on different characteristics for different coupling strengths. We find, first numerically, that the degree of synchronization depends strongly on the form (quantified by kurtosis) of the natural frequency sample and the rotation frequency of the collective mode depends on the asymmetry (quantified by skewness) of the sample. Both findings are verified in the infinite limit. With these findings, we better understand and generalize observations of other authors. A bit aside of the general line of thoughts, we find an analytical expression for the volume contraction in phase space. The second part of this thesis concentrates on an ordering effect of the finite-size fluctuations. In the infinite limit, the oscillators are separated into coherent and incoherent thus ordered and disordered oscillators. In finite ensembles, finite-size fluctuations can generate additional order among the asynchronous oscillators. The basic principle – noise-induced synchronization – is known from several recent papers. Among coupled oscillators, phases are pushed together by the order parameter fluctuations, as we on the one hand show directly and on the other hand quantify with a synchronization measure from directed statistics between pairs of passive oscillators. We determine the dependence of this synchronization measure from the ratio of pairwise natural frequency difference and variance of the order parameter fluctuations. We find a good agreement with a simple analytical model, in which we replace the deterministic fluctuations of the order parameter by white noise. KW - synchronization KW - Kuramoto model KW - finite size KW - phase transition KW - dynamical systems KW - networks KW - Synchronisation KW - Kuramoto-Modell KW - endliche Ensembles KW - Phasenübergang KW - dynamische Systeme KW - Netzwerke Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429168 ER -