TY - THES A1 - Stachlewska, Iwona Sylwia T1 - Investigation of tropospheric arctic aerosol and mixed-phase clouds using airborne lidar technique T1 - Untersuchung der tropospherischen arktischen Aerosolen und Mixed-Phase Wolken mit der Flugzeuggetragenen Lidar Technik N2 - An Airborne Mobile Aerosol Lidar (AMALi) was constructed and built at Alfred-Wegener-Institute for Polar and Marine Research (AWI) in Potsdam, Germany for the lower tropospheric aerosol and cloud research under tough arctic conditions. The system was successfully used during two AWI airborne field campaigns, ASTAR 2004 and SVALEX 2005, performed in vicinity of Spitsbergen in the Arctic. The novel evaluation schemes, the Two-Stream Inversion and the Iterative Airborne Inversion, were applied to the obtained lidar data. Thereby, calculation of the particle extinction and backscatter coefficient profiles with corresponding lidar ratio profiles characteristic for the arctic air was possible. The comparison of these lidar results with the results of other in-situ and remote instrumentation (ground based Koldewey Aerosol Raman Lidar (KARL), sunphotometer, radiosounding, satellite imagery) allowed to provided clean contra polluted (Arctic Haze) characteristics of the arctic aerosols. Moreover, the data interpretation by means of the ECMWF Operational Analyses and small-scale dispersion model EULAG allowed studying the effects of the Spitsbergens orography on the aerosol load in the Planetary Boundary Layer. With respect to the cloud studies a new methodology of alternated remote AMALi measurements with the airborne in-situ cloud optical and microphysical parameters measurements was proved feasible for the low density mixed-phase cloud studies. An example of such approach during observation of the natural cloud seeding (feeder-seeder phenomenon) with ice crystals precipitating into the lower supercooled stratocumulus deck were discussed in terms of the lidar signal intensity profiles and corresponding depolarisation ratio profiles. For parts of the cloud system characterised by almost negligible multiple scattering the calculation of the particle backscatter coefficient profiles was possible using the lidar ratio information obtained from the in-situ measurements in ice-crystal cloud and water cloud. N2 - Das Airborne Mobile Aerosol Lidar (AMALi) wurde am Alfred-Wegener-Institut für Polar- und Meeresforschung in Potsdam für die Untersuchung arktischer Aerosole und Wolken der unteren Troposphäre entwickelt und gebaut. Das AMALi wurde erfolgreich in zwei AWI Flugzeugmesskampagnen, der ASTAR 2004 und der SvalEx 2005, die in Spitzbergen in der Arktis durchgeführt wurden, eingesetzt. Zwei neue Lidar Datenauswertungsmethoden wurden implementiert: die Two-Stream Inversion und die Iterative Airborne Inversion. Damit erwies sich die Berechnung der Profile der Teilchen Rückstreu- und Extinktionskoeffizienten mit einem entsprechenden Lidar Verhältnis, das charakteristisch für arktische Luft ist, als möglich. Der Vergleich dieser Auswertungen mit den Resultaten, die mit verschiedenen Fernerkundungs- und In-situ Instrumenten gewonnen worden waren (stationäres Koldewey Aerosol Raman Lidar KARL, Sonnenphotometer, Radiosondierung und Satellitenbilder) ermöglichten die Interpretation der Lidar-Resultate und eine Charakterisierung sowohl der reinen als auch der verschmutzten Luft. Außerdem konnten die Lidardaten mit operationellen ECMWF Daten und dem kleinskaligen Dispersionsmodel EULAG verglichen werden. Dadurch konnte der Einfluss der Spitzbergener Orographie auf die Aerosolladung der Planetaren Grenzschicht untersucht werden. Für Wolkenmessungen wurde eine neue Methode der alternativen Fernerkundung mit dem AMALi und flugzeuggetragenen In-situ Messgeräten verwendet, um optische und mikrophysikalische Eigenschaften der Wolken zu bestimmen. Diese Methode wurde erfolgreich implementiert und auf Mixed-Phase Wolken geringer optischen Dicke angewendet. Ein Beispiel hier stellt das Besamen der Wolken (sogenannte Feeder-Seeder Effekt) dar, bei dem Eiskristalle in eine niedrige unterkühlte Stratokumulus fallen. Dabei konnten Lidarsignale, Intensitätsprofile und die Volumendepolarisation gemessen werden. Zusätzlich konnten in den weniger dichten Bereichen der Wolken, in denen Vielfachstreuung vernachlässigbar ist, auch Profile des Teilchen Rückstreukoeffizienten berechnet werden, wobei Lidarverhältnisse genommen wurden, die aus In-situ Messungen für Wasser- und Eiswolken ermittelt wurden. KW - Aerosol KW - Lidar KW - Flugzeug Lidar KW - Aerosol und Wolken Lidar KW - Arktische Nebel KW - EULAG Model KW - Airborne Aerosol and Cloud Lidar KW - Arctic Haze KW - Two-stream Lidar Inversion KW - Iterative Airborne Lidar Inversion KW - EULAG Model Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-6984 ER - TY - THES A1 - Samaras, Stefanos T1 - Microphysical retrieval of non-spherical aerosol particles using regularized inversion of multi-wavelength lidar data T1 - Retrieval der Mikrophysik von nichtkugelförmigen Aerosolpartikeln durch regularisierte Inversion von Mehrwellenlängen-Lidardaten N2 - Numerous reports of relatively rapid climate changes over the past century make a clear case of the impact of aerosols and clouds, identified as sources of largest uncertainty in climate projections. Earth’s radiation balance is altered by aerosols depending on their size, morphology and chemical composition. Competing effects in the atmosphere can be further studied by investigating the evolution of aerosol microphysical properties, which are the focus of the present work. The aerosol size distribution, the refractive index, and the single scattering albedo are commonly used such properties linked to aerosol type, and radiative forcing. Highly advanced lidars (light detection and ranging) have reduced aerosol monitoring and optical profiling into a routine process. Lidar data have been widely used to retrieve the size distribution through the inversion of the so-called Lorenz-Mie model (LMM). This model offers a reasonable treatment for spherically approximated particles, it no longer provides, though, a viable description for other naturally occurring arbitrarily shaped particles, such as dust particles. On the other hand, non-spherical geometries as simple as spheroids reproduce certain optical properties with enhanced accuracy. Motivated by this, we adapt the LMM to accommodate the spheroid-particle approximation introducing the notion of a two-dimensional (2D) shape-size distribution. Inverting only a few optical data points to retrieve the shape-size distribution is classified as a non-linear ill-posed problem. A brief mathematical analysis is presented which reveals the inherent tendency towards highly oscillatory solutions, explores the available options for a generalized solution through regularization methods and quantifies the ill-posedness. The latter will improve our understanding on the main cause fomenting instability in the produced solution spaces. The new approach facilitates the exploitation of additional lidar data points from depolarization measurements, associated with particle non-sphericity. However, the generalization of LMM vastly increases the complexity of the problem. The underlying theory for the calculation of the involved optical cross sections (T-matrix theory) is computationally so costly, that would limit a retrieval analysis to an unpractical point. Moreover the discretization of the model equation by a 2D collocation method, proposed in this work, involves double integrations which are further time consuming. We overcome these difficulties by using precalculated databases and a sophisticated retrieval software (SphInX: Spheroidal Inversion eXperiments) especially developed for our purposes, capable of performing multiple-dataset inversions and producing a wide range of microphysical retrieval outputs. Hybrid regularization in conjunction with minimization processes is used as a basis for our algorithms. Synthetic data retrievals are performed simulating various atmospheric scenarios in order to test the efficiency of different regularization methods. The gap in contemporary literature in providing full sets of uncertainties in a wide variety of numerical instances is of major concern here. For this, the most appropriate methods are identified through a thorough analysis on an overall-behavior basis regarding accuracy and stability. The general trend of the initial size distributions is captured in our numerical experiments and the reconstruction quality depends on data error level. Moreover, the need for more or less depolarization points is explored for the first time from the point of view of the microphysical retrieval. Finally, our approach is tested in various measurement cases giving further insight for future algorithm improvements. N2 - Zahlreiche Berichte von relativ schnellen Klimaveränderungen im vergangenen Jahrhundert liefern überzeugende Argumente über die Auswirkungen von Aerosolen und Wolken auf Wetter und Klima. Aerosole und Wolken wurden als Quellen größter Unsicherheit in Klimaprognosen identifiziert. Die Strahlungsbilanz der Erde wird verändert durch die Partikelgröße, ihre Morphologie und ihre chemische Zusammensetzung. Konkurrierende Effekte in der Atmosphäre können durch die Bestimmung von mikrophysikalischen Partikeleigenschaften weiter untersucht werden, was der Fokus der vorliegenden Arbeit ist. Die Aerosolgrößenverteilung, der Brechungsindex der Partikeln und die Einzel-Streu-Albedo sind solche häufig verwendeten Parameter, die mit dem Aerosoltyp und dem Strahlungsantrieb verbunden sind. Hoch entwickelte Lidare (Light Detection and Ranging) haben die Aerosolüberwachung und die optische Profilierung zu einem Routineprozess gemacht. Lidar-Daten wurden verwendet um die Größenverteilung zu bestimmen, was durch die Inversion des sogenannten Lorenz-Mie-Modells (LMM) gelingt. Dieses Modell bietet eine angemessene Behandlung für sphärisch angenäherte Partikeln, es stellt aber keine brauchbare Beschreibung für andere natürlich auftretende beliebig geformte Partikeln -wie z.B. Staubpartikeln- bereit. Andererseits stellt die Einbeziehung einer nicht kugelförmigen Geometrie –wie z.B. einfache Sphäroide- bestimmte optische Eigenschaften mit verbesserter Genauigkeit dar. Angesichts dieser Tatsache erweitern wir das LMM durch die Approximation von Sphäroid-Partikeln. Dazu ist es notwendig den Begriff einer zweidimensionalen Größenverteilung einzuführen. Die Inversion einer sehr geringen Anzahl optischer Datenpunkte zur Bestimmung der Form der Größenverteilung ist als ein nichtlineares schlecht gestelltes Problem bekannt. Eine kurze mathematische Analyse wird vorgestellt, die die inhärente Tendenz zu stark oszillierenden Lösungen zeigt. Weiterhin werden Optionen für eine verallgemeinerte Lösung durch Regularisierungsmethoden untersucht und der Grad der Schlechtgestelltheit quantifiziert. Letzteres wird unser Verständnis für die Hauptursache der Instabilität bei den berechneten Lösungsräumen verbessern. Der neue Ansatz ermöglicht es uns, zusätzliche Lidar-Datenpunkte aus Depolarisationsmessungen zu nutzen, die sich aus der Nicht-sphärizität der Partikeln assoziieren. Die Verallgemeinerung des LMMs erhöht erheblich die Komplexität des Problems. Die zugrundeliegende Theorie für die Berechnung der beteiligten optischen Querschnitte (T-Matrix-Ansatz) ist rechnerisch so aufwendig, dass eine Neuberechnung dieser nicht sinnvoll erscheint. Darüber hinaus wird ein zweidimensionales Kollokationsverfahren für die Diskretisierung der Modellgleichung vorgeschlagen. Dieses Verfahren beinhaltet Doppelintegrationen, die wiederum zeitaufwendig sind. Wir überwinden diese Schwierigkeiten durch Verwendung vorgerechneter Datenbanken sowie einer hochentwickelten Retrieval-Software (SphInX: Spheroidal Inversion eXperiments). Diese Software wurde speziell für unseren Zweck entwickelt und ist in der Lage mehrere Datensatzinversionen gleichzeitig durchzuführen und eine große Auswahl von mikrophysikalischen Retrieval-Ausgaben bereitzustellen. Eine hybride Regularisierung in Verbindung mit einem Minimierungsverfahren wird als Grundlage für unsere Algorithmen verwendet. Synthetische Daten-Inversionen werden mit verschiedenen atmosphärischen Szenarien durchgeführt, um die Effizienz verschiedener Regularisierungsmethoden zu untersuchen. Die Lücke in der gegenwärtigen wissenschaftlichen Literatur gewisse Unsicherheiten durch breitgefächerte numerische Fälle bereitzustellen, ist ein Hauptanliegen dieser Arbeit. Motiviert davon werden die am besten geeigneten Verfahren einer gründlichen Analyse in Bezug auf ihr Gesamtverhalten, d.h. Genauigkeit und Stabilität, unterzogen. Der allgemeine Trend der Anfangsgrößenverteilung wird in unseren numerischen Experimenten erfasst. Zusätzlich hängt die Rekonstruktionsqualität vom Datenfehler ab. Darüber hinaus wird die Anzahl der notwendigen Depolarisationspunkte zum ersten Mal aus der Sicht des mikrophysikalischen Parameter-Retrievals erforscht. Abschließend verwenden wir unsere Software für verschiedene Messfälle, was weitere Einblicke für künftige Verbesserungen des Algorithmus gibt. KW - microphysics KW - retrieval KW - lidar KW - aerosols KW - regularization KW - ill-posed KW - inversion KW - Mikrophysik KW - Retrieval KW - Lidar KW - Aerosole KW - Regularisierung KW - schlecht gestellt KW - Inversion Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396528 ER - TY - THES A1 - Nakoudi, Konstantina T1 - Properties and radiative effect of aerosol and cirrus clouds over the European Arctic T1 - Eigenschaften und Strahlungseffekt von Aerosol und Zirruswolken über der europäischen Arktis N2 - Over the last decades, the rate of near-surface warming in the Arctic is at least double than elsewhere on our planet (Arctic amplification). However, the relative contribution of different feedback processes to Arctic amplification is a topic of ongoing research, including the role of aerosol and clouds. Lidar systems are well-suited for the investigation of aerosol and optically-thin clouds as they provide vertically-resolved information on fine temporal scales. Global aerosol models fail to converge on the sign of the Arctic aerosol radiative effect (ARE). In the first part of this work, the optical and microphysical properties of Arctic aerosol were characterized at case study level in order to assess the short-wave (SW) ARE. A long-range transport episode was first investigated. Geometrically similar aerosol layers were captured over three locations. Although the aerosol size distribution was different between Fram Strait(bi-modal) and Ny-Ålesund (fine mono-modal), the atmospheric column ARE was similar. The latter was related to the domination of accumulation mode aerosol. Over both locations top of the atmosphere (TOA) warming was accompanied by surface cooling. Subsequently, the sensitivity of ARE was investigated with respect to different aerosol and spring-time ambient conditions. A 10% change in the single-scattering albedo (SSA) induced higher ARE perturbations compared to a 30% change in the aerosol extinction coefficient. With respect to ambient conditions, the ARETOA was more sensitive to solar elevation changes compared to AREsur f ace. Over dark surfaces the ARE profile was exclusively negative, while over bright surfaces a negative to positive shift occurred above the aerosol layers. Consequently, the sign of ARE can be highly sensitive in spring since this season is characterized by transitional surface albedo conditions. As the inversion of the aerosol microphysics is an ill-posed problem, the inferred aerosol size distribution of a low-tropospheric event was compared to the in-situ measured distribution. Both techniques revealed a bi-modal distribution, with good agreement in the total volume concentration. However, in terms of SSA a disagreement was found, with the lidar inversion indicating highly scattering particles and the in-situ measurements pointing to absorbing particles. The discrepancies could stem from assumptions in the inversion (e.g. wavelength-independent refractive index) and errors in the conversion of the in-situ measured light attenuation into absorption. Another source of discrepancy might be related to an incomplete capture of fine particles in the in-situ sensors. The disagreement in the most critical parameter for the Arctic ARE necessitates further exploration in the frame of aerosol closure experiments. Care must be taken in ARE modelling studies, which may use either the in-situ or lidar-derived SSA as input. Reliable characterization of cirrus geometrical and optical properties is necessary for improving their radiative estimates. In this respect, the detection of sub-visible cirrus is of special importance. The total cloud radiative effect (CRE) can be negatively biased, should only the optically-thin and opaque cirrus contributions are considered. To this end, a cirrus retrieval scheme was developed aiming at increased sensitivity to thin clouds. The cirrus detection was based on the wavelet covariance transform (WCT) method, extended by dynamic thresholds. The dynamic WCT exhibited high sensitivity to faint and thin cirrus layers (less than 200 m) that were partly or completely undetected by the existing static method. The optical characterization scheme extended the Klett–Fernald retrieval by an iterative lidar ratio (LR) determination (constrained Klett). The iterative process was constrained by a reference value, which indicated the aerosol concentration beneath the cirrus cloud. Contrary to existing approaches, the aerosol-free assumption was not adopted, but the aerosol conditions were approximated by an initial guess. The inherent uncertainties of the constrained Klett were higher for optically-thinner cirrus, but an overall good agreement was found with two established retrievals. Additionally, existing approaches, which rely on aerosol-free assumptions, presented increased accuracy when the proposed reference value was adopted. The constrained Klett retrieved reliably the optical properties in all cirrus regimes, including upper sub-visible cirrus with COD down to 0.02. Cirrus is the only cloud type capable of inducing TOA cooling or heating at daytime. Over the Arctic, however, the properties and CRE of cirrus are under-explored. In the final part of this work, long-term cirrus geometrical and optical properties were investigated for the first time over an Arctic site (Ny-Ålesund). To this end, the newly developed retrieval scheme was employed. Cirrus layers over Ny-Ålesund seemed to be more absorbing in the visible spectral region compared to lower latitudes and comprise relatively more spherical ice particles. Such meridional differences could be related to discrepancies in absolute humidity and ice nucleation mechanisms. The COD tended to decline for less spherical and smaller ice particles probably due to reduced water vapor deposition on the particle surface. The cirrus optical properties presented weak dependence on ambient temperature and wind conditions. Over the 10 years of the analysis, no clear temporal trend was found and the seasonal cycle was not pronounced. However, winter cirrus appeared under colder conditions and stronger winds. Moreover, they were optically-thicker, less absorbing and consisted of relatively more spherical ice particles. A positive CREnet was primarily revealed for a broad range of representative cloud properties and ambient conditions. Only for high COD (above 10) and over tundra a negative CREnet was estimated, which did not hold true over snow/ice surfaces. Consequently, the COD in combination with the surface albedo seem to play the most critical role in determining the CRE sign over the high European Arctic. N2 - Seit den letzten Jahrzehnten erwärmt sich die arktische, oberflächennahe Luft mindestens doppelt so schnell, wie anderswo auf unserem Planeten (arktische Verstärkung). Der relative Beitrag verschiedener Rückkopplungsprozesse zu dieser arktischen Verstärkung ist ein Thema laufender Forschung, einschließlich der Rolle von Aerosol und Wolken. Lidarsysteme eignen sich gut zur Untersuchung von Aerosolen und optisch dünnen Wolken, da sie vertikal aufgelöste Informationen auf kurzen Zeitskalen liefern. Globale Aerosolmodelle können das Vorzeichen des Aerosolstrahlungseffekts (ARE) in der Arktis nicht erfassen. Im ersten Teil dieser Arbeit, wurden die optischen und mikrophysikalischen Eigenschaften des arktischen Aerosols auf Fallstudienebene charakterisiert, um das kurzwellige ARE zu bestimmen. Ein Ferntransportereignis von Aerosol wurde zuerst untersucht. An drei Standorten wurden geometrisch ähnliche Aerosolschichten erfasst. Obwohl die Aerosolgrößenverteilung zwischen der Framstraße (bimodal) und Ny-Ålesund (monomodal im Akkumulationsmode) unterschiedlich war, ergaben sich ähnliche Werte für das ARE in der atmosphärische Säule. Letzteres hängt mit der Dominanz des Akkumulationsmodus-Aerosols zusammen. Über beiden Standorten ergab sich am Oberrand der Atmosphäre (TOA) eine Erwärmung; diese wurde von einer Oberflächenkühlung begleitet. Anschließend wurde die Abhängigkeit der ARE in Bezug auf verschiedene Aerosole und Umgebungsbedingungen im Frühling untersucht. Eine Änderung der Einfachstreualbedo (SSA) um 10% induzierte höhere ARE-Änderungen im Vergleich zu einer 30%igen Änderung des Aerosol-Extinktionskoeffizienten. In Bezug auf die Umgebungsbedingungen war die TOAARE im Vergleich zur Oberflächen-ARE empfindlicher gegenüber Änderungen der Sonnenhöhe. Über dunklen Oberflächen war das ARE-Profil ausschließlich negativ, während über hellen Oberflächen oberhalb der Aerosolschichten eine Verschiebung von negativen zu positiven Werten auftrat. Entsprechend ist das Vorzeichen der ARE im Frühjahr hochempfindlich, da diese Jahreszeit durch starke Änderung der Oberflächenalbedo gekennzeichnet ist. Da die Inversion der Aerosolmikrophysik aus optischen Daten ein schlecht-gestelltes Problem ist, wurde die abgeleitete Aerosolgrößenverteilung eines Aerosol-Ereignisses in der niederen Troposphäre mit der einer aus in situ Verfahren abgeleiteten Verteilung verglichen. Beide Techniken ergaben zwei Aerosolmodi mit guter Übereinstimmung in Bezug auf die Gesamtvolumenkonzentration. In Bezug auf die SSA wurde jedoch ein Unterscied festgestellt, wobei die Lidarinversion auf stark streuende Partikel und die in-situ Messungen auf absorbierende Partikel hinwiesen. Die Abweichungen könnten auf Annahmen bei der Inversion (z.B. wellenlängenunabhängiger Brechungsindex) und auf Fehler bei der Umrechnung der in-situ gemessenen Lichtdämpfung in Absorption zurückzuführen sein. Eine weitere Ursache der Diskrepanz könnte auf eine unvollständige Erfassung von Feinpartikeln in den insitu-Sensoren zurückzuführen sein. Die Unstimmigkeit über diesen wichtigsten Parameter für die arktische ARE macht weitere Untersuchungen im Rahmen von Aerosolschließungsexperimenten erforderlich. Vorsicht ist bei der ARE-aus Modellierungsstudien geboten, bei denen entweder in-situ- oder lidar-abgeleitete SSA als Input verwendet werden. Eine zuverlässige Charakterisierung von Zirruswolken ist erforderlich, um die Abschätzung ihrer Strahlungswirkung zu verbessern. Von besonderer Bedeutung ist dabei der Nachweis von sub-visible Zirrus. Der Wolkenstrahlungseffekt (CRE) fällt zu negativ aus, wenn nur der optisch dünne und opake Zirrus berücksichtigt werden. Daher wurde ein ZirrusErkennungsschema basierend auf Lidardaten entwickelt. Das Schema verwendet die Wavelet– Kovarianz–Transformation (WCT), erweitert um dynamische Schwellenwerte. Die dynamische WCT zeigte eine hohe Empfindlichkeit gegenüber schwachen und dünnen Zirrusschichten von weniger als 200 m Mächtigkeit. Das optische Charakterisierungsschema erweiterte die Klett–Fernald–Retrieval durch iterative Lidar-Ratio (LR) Bestimmung (constrained Klett). Der iterative Prozess wurde durch einen Referenzwert eingeschränkt, der die Aerosolkonzentration unterhalb der Zirruswolke angab. Im Gegensatz zu bisherigen Ansätzen brauchte keine Aerosolfreiheit angenommen zu werden. Stattdessen wurden realistischere Annahmen unter der Wolke verwendet. Die inhärenten Unsicherheiten des eingeschränkten Kletts waren bei optisch dünneren Zirren höher, aber insgesamt wurde eine gute Übereinstimmung mit zwei etablierten Retrievals gefunden. Darüber hinaus konnten die bestehenden Ansätze, die auf aerosolfreien Annahmen beruhen, ebenfalls verbessert werden, wenn der vorgeschlagene Referenzwert verwendet wurde. Der constrained Klett konnte die optischen Eigenschaften in allen Zirrusregimen zuverlässig abrufen, einschliesslich der oberen sub-visible Zirren mit COD bis hinunter zu 0,02. Zirrus ist die einzige Wolkengattung, die tagsüber am Atmosphärenoberrand entweder eine Kühlung oder eine Erwärmung hervorrufen kann. Über der Arktis sind die Eigenschaften und das CRE von Zirrus bislang nur wenig erforscht. Im letzten Teil dieser Arbeit wurden erstmals mit dem neuentwickelten Retrieval-Schema deren langfristige geometrische und optische Eigenschaften an einem arktischen Standort untersucht. Zirruswolken über Ny-Ålesund schienen im sichtbaren Spektralbereich absorbierender zu sein als in den niedrigen Breiten und mehr kugelförmige Eispartikel zu enthalten. Solche meridididialen Unterschiede könnten mit Diskrepanzen der absoluten Luftfeuchtigkeit und der Eiskeimbildung zusammenhängen. Tendenziell sank die COD bei weniger kugelförmigen und kleineren Eispartikeln, was wahrscheinlich auf eine geringere Wasserdampfablagerung an der Partikeloberfläche zurückzuführen ist. Die optischen Eigenschaften des Zirrus zeigten eine geringe Abhängigkeit von Umgebungstemperatur und Windbedingungen. In den 10 Jahren der Analyse konnte kein eindeutiger zeitlicher Trend und kein ausgeprägter saisonaler Zyklus festgestellt werden. Ein positives netto-CRE wurde für ein breites Spektrum von repräsentative Wolkeneigenschaften und Umgebungsbedingungen festgestellt. Für hohe COD (über 10) wurde jedoch ein negatives netto-CRE über der Tundra ermittelt, im Gegensatz zu Schnee- / Eisoberflächen. Folglich scheint die COD in Verbindung mit der Oberflächenalbedo die kritischste Rolle bei der Bestimmung des CRE über der hohen europäischen Arktis zu spielen. KW - aerosol KW - clouds KW - cirrus clouds KW - European Arctic KW - lidar KW - radiative transfer modeling KW - Europäische Arktis KW - Aerosol KW - Zirruswolken KW - Wolken KW - Lidar KW - Strahlungtransportmodellierung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-530366 ER - TY - THES A1 - Lampert, Astrid T1 - Airborne lidar observations of tropospheric arctic clouds T1 - Flugzeuggetragene Lidar-Beobachtung von troposphärischen arktischen Wolken N2 - Due to the unique environmental conditions and different feedback mechanisms, the Arctic region is especially sensitive to climate changes. The influence of clouds on the radiation budget is substantial, but difficult to quantify and parameterize in models. In the framework of the PhD, elastic backscatter and depolarization lidar observations of Arctic clouds were performed during the international Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) from Svalbard in March and April 2007. Clouds were probed above the inaccessible Arctic Ocean with a combination of airborne instruments: The Airborne Mobile Aerosol Lidar (AMALi) of the Alfred Wegener Institute for Polar and Marine Research provided information on the vertical and horizontal extent of clouds along the flight track, optical properties (backscatter coefficient), and cloud thermodynamic phase. From the data obtained by the spectral albedometer (University of Mainz), the cloud phase and cloud optical thickness was deduced. Furthermore, in situ observations with the Polar Nephelometer, Cloud Particle Imager and Forward Scattering Spectrometer Probe (Laboratoire de Météorologie Physique, France) provided information on the microphysical properties, cloud particle size and shape, concentration, extinction, liquid and ice water content. In the thesis, a data set of four flights is analyzed and interpreted. The lidar observations served to detect atmospheric structures of interest, which were then probed by in situ technique. With this method, an optically subvisible ice cloud was characterized by the ensemble of instruments (10 April 2007). Radiative transfer simulations based on the lidar, radiation and in situ measurements allowed the calculation of the cloud forcing, amounting to -0.4 W m-2. This slight surface cooling is negligible on a local scale. However, thin Arctic clouds have been reported more frequently in winter time, when the clouds' effect on longwave radiation (a surface warming of 2.8 W m-2) is not balanced by the reduced shortwave radiation (surface cooling). Boundary layer mixed-phase clouds were analyzed for two days (8 and 9 April 2007). The typical structure consisting of a predominantly liquid water layer on cloud top and ice crystals below were confirmed by all instruments. The lidar observations were compared to European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological analyses. A change of air masses along the flight track was evidenced in the airborne data by a small completely glaciated cloud part within the mixed-phase cloud system. This indicates that the updraft necessary for the formation of new cloud droplets at cloud top is disturbed by the mixing processes. The measurements served to quantify the shortcomings of the ECMWF model to describe mixed-phase clouds. As the partitioning of cloud condensate into liquid and ice water is done by a diagnostic equation based on temperature, the cloud structures consisting of a liquid cloud top layer and ice below could not be reproduced correctly. A small amount of liquid water was calculated for the lowest (and warmest) part of the cloud only. Further, the liquid water content was underestimated by an order of magnitude compared to in situ observations. The airborne lidar observations of 9 April 2007 were compared to space borne lidar data on board of the satellite Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The systems agreed about the increase of cloud top height along the same flight track. However, during the time delay of 1 h between the lidar measurements, advection and cloud processing took place, and a detailed comparison of small-scale cloud structures was not possible. A double layer cloud at an altitude of 4 km was observed with lidar at the West coast in the direct vicinity of Svalbard (14 April 2007). The cloud system consisted of two geometrically thin liquid cloud layers (each 150 m thick) with ice below each layer. While the upper one was possibly formed by orographic lifting under the influence of westerly winds, or by the vertical wind shear shown by ECMWF analyses, the lower one might be the result of evaporating precipitation out of the upper layer. The existence of ice precipitation between the two layers supports the hypothesis that humidity released from evaporating precipitation was cooled and consequently condensed as it experienced the radiative cooling from the upper layer. In summary, a unique data set characterizing tropospheric Arctic clouds was collected with lidar, in situ and radiation instruments. The joint evaluation with meteorological analyses allowed a detailed insight in cloud properties, cloud evolution processes and radiative effects. N2 - Die Arktis mit ihren speziellen Umweltbedingungen ist besonders empfindlich gegenüber Klimaveränderungen. Dabei spielen Wolken eine große Rolle im Strahlungsgleichgewicht, die aber nur schwer genau bestimmt und in Klimamodellen dargestellt werden kann. Die Daten für die Promotionsarbeit wurden im Frühjahr 2007 bei Flugzeug-Messungen von Wolken über dem Arktischen Ozean von Spitzbergen aus erhoben. Das dafür verwendete Lidar (Licht-Radar) des Alfred-Wegener-Instituts lieferte ein höhenaufgelöstes Bild der Wolkenstrukturen und ihrer Streu-Eigenschaften, andere Messgeräte ergänzten optische sowie mikrophysikalische Eigenschaften der Wolkenteilchen (Extinktion, Größenverteilung, Form, Konzentration, Flüssigwasser- und Eisgehalt, Messgeräte vom Laboratoire de Météorologie Physique, France) und Strahlungsmessungen (Uni Mainz). Während der Messkampagne herrschte Nordwind vor. Die untersuchten Luftmassen mit Ursprung fern von menschlichen Verschmutzungsquellen war daher sehr sauber. Beim Überströmen der kalten Luft über den offenen warmen Arktischen Ozean bildeten sich in der Grenzschicht (ca. 0-1500 m Höhe) Mischphasenwolken, die aus unterkühlten Wassertröpfchen im oberen Bereich und Eis im unteren Bereich der Wolken bestehen. Mit den Flugzeug-Messungen und numerischen Simulationen des Strahlungstransports wurde der Effekt einer dünnen Eiswolke auf den Strahlungshaushalt bestimmt. Die Wolke hatte lokal eine geringe Abkühlung der Erdoberfläche zur Folge. Ähnliche Wolken würden jedoch im Winter, wenn keine Sonnenstrahlung die Arktis erreicht, durch den Treibhauseffekt eine nicht vernachlässigbare Erwärmung der Oberfläche verursachen. Die Messungen der Mischphasenwolken wurden mit einem Wettervorhersagemodell (ECMWF) verglichen. Für die ständig neue Bildung von flüssigen Wassertropfen im oberen Teil der Wolke ist das Aufsteigen von feuchten Luftpaketen nötig. Während einer Messung wurden entlang der Flugstrecke verschiedene Luftmassen durchflogen. An der Luftmassengrenze wurde eine reine Eiswolke inmitten eines Mischphasen-Systems beobachtet. Die Messungen zeigen, dass das Mischen von Luftmassen den Nachschub an feuchter Luft blockiert, was unmittelbare Auswirkungen auf die thermodynamische Phase des Wolkenwassers hat. Weiterhin wurde bestimmt, wie groß die Abweichungen der Modellrechnungen von den Messungen bezüglich Wassergehalt und der Verteilung von Flüssigwasser und Eis waren. Durch die vereinfachte Wolken-Parameterisierung wurde die typische vertikale Struktur von Mischphasenwolken im Modell nicht wiedergegeben. Die flugzeuggetragenen Lidar-Messungen vom 9. April 2007 wurden mit Lidar-Messungen an Bord des Satelliten CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) verglichen. Die Messungen zeigten beide eine ansteigende Wolkenobergrenze entlang desselben Flugwegs. Da die Messungen jedoch nicht genau gleichzeitig durchgeführt wurden, war wegen Advektion und Prozessen in den Wolken kein genauer Vergleich der kleinskaligen Wolkenstrukturen möglich. Außerdem wurde eine doppelte Wolkenschicht in der freien Troposphäre (4 km Höhe) analysiert. Die Wolke bestand aus zwei separaten dünnen Schichten aus flüssigem Wasser (je 150 m dick) mit jeweils Eis darunter. Die untere Schicht entstand wahrscheinlich aus verdunstetem Eis-Niederschlag. Diese feuchte Schicht wurde durch die Abstrahlung der oberen Wolkenschicht gekühlt, so dass sie wieder kondensierte. Solche Wolkenformationen sind in der Arktis bisher vor allem in der Grenzschicht bekannt. Ein einzigartiger Datensatz von arktischen Wolken wurde mit einer Kombination verschiedener Flugzeug-Messgeräte erhoben. Zusammen mit meteorologischen Analysen konnten für verschiedene Fallstudien Wolkeneigenschaften, Entwicklungsprozesse und Auswirkungen auf den Strahlungshaushalt bestimmt werden. KW - Arktis KW - Lidar KW - Mischphasenwolken KW - optisch dünne Wolken KW - CALIPSO KW - Arctic KW - lidar KW - mixed-phase clouds KW - optically thin clouds KW - CALIPSO Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-41211 ER - TY - THES A1 - Hoffmann, Anne T1 - Comparative aerosol studies based on multi-wavelength Raman LIDAR at Ny-Ålesund, Spitsbergen T1 - Vergleichende Aerosolstudien mittels Mehrwellenlängen-Raman-LIDAR in Ny-Ålesund,Spitzbergen N2 - The Arctic is a particularly sensitive area with respect to climate change due to the high surface albedo of snow and ice and the extreme radiative conditions. Clouds and aerosols as parts of the Arctic atmosphere play an important role in the radiation budget, which is, as yet, poorly quantified and understood. The LIDAR (Light Detection And Ranging) measurements presented in this PhD thesis contribute with continuous altitude resolved aerosol profiles to the understanding of occurrence and characteristics of aerosol layers above Ny-Ålesund, Spitsbergen. The attention was turned to the analysis of periods with high aerosol load. As the Arctic spring troposphere exhibits maximum aerosol optical depths (AODs) each year, March and April of both the years 2007 and 2009 were analyzed. Furthermore, stratospheric aerosol layers of volcanic origin were analyzed for several months, subsequently to the eruptions of the Kasatochi and Sarychev volcanoes in summer 2008 and 2009, respectively. The Koldewey Aerosol Raman LIDAR (KARL) is an instrument for the active remote sensing of atmospheric parameters using pulsed laser radiation. It is operated at the AWIPEV research base and was fundamentally upgraded within the framework of this PhD project. It is now equipped with a new telescope mirror and new detection optics, which facilitate atmospheric profiling from 450m above sea level up to the mid-stratosphere. KARL provides highly resolved profiles of the scattering characteristics of aerosol and cloud particles (backscattering, extinction and depolarization) as well as water vapor profiles within the lower troposphere. Combination of KARL data with data from other instruments on site, namely radiosondes, sun photometer, Micro Pulse LIDAR, and tethersonde system, resulted in a comprehensive data set of scattering phenomena in the Arctic atmosphere. The two spring periods March and April 2007 and 2009 were at first analyzed based on meteorological parameters, like local temperature and relative humidity profiles as well as large scale pressure patterns and air mass origin regions. Here, it was not possible to find a clear correlation between enhanced AOD and air mass origin. However, in a comparison of two cloud free periods in March 2007 and April 2009, large AOD values in 2009 coincided with air mass transport through the central Arctic. This suggests the occurrence of aerosol transformation processes during the aerosol transport to Ny-Ålesund. Measurements on 4 April 2009 revealed maximum AOD values of up to 0.12 and aerosol size distributions changing with altitude. This and other performed case studies suggest the differentiation between three aerosol event types and their origin: Vertically limited aerosol layers in dry air, highly variable hygroscopic boundary layer aerosols and enhanced aerosol load across wide portions of the troposphere. For the spring period 2007, the available KARL data were statistically analyzed using a characterization scheme, which is based on optical characteristics of the scattering particles. The scheme was validated using several case studies. Volcanic eruptions in the northern hemisphere in August 2008 and June 2009 arose the opportunity to analyze volcanic aerosol layers within the stratosphere. The rate of stratospheric AOD change was similar within both years with maximum values above 0.1 about three to five weeks after the respective eruption. In both years, the stratospheric AOD persisted at higher rates than usual until the measurements were stopped in late September due to technical reasons. In 2008, up to three aerosol layers were detected, the layer structure in 2009 was characterized by up to six distinct and thin layers which smeared out to one broad layer after about two months. The lowermost aerosol layer was continuously detected at the tropopause altitude. Three case studies were performed, all revealed rather large indices of refraction of m = (1.53–1.55) - 0.02i, suggesting the presence of an absorbing carbonaceous component. The particle radius, derived with inversion calculations, was also similar in both years with values ranging from 0.16 to 0.19 μm. However, in 2009, a second mode in the size distribution was detected at about 0.5 μm. The long term measurements with the Koldewey Aerosol Raman LIDAR in Ny-Ålesund provide the opportunity to study Arctic aerosols in the troposphere and the stratosphere not only in case studies but on longer time scales. In this PhD thesis, both, tropospheric aerosols in the Arctic spring and stratospheric aerosols following volcanic eruptions have been described qualitatively and quantitatively. Case studies and comparative studies with data of other instruments on site allowed for the analysis of microphysical aerosol characteristics and their temporal evolution. N2 - Die Arktis ist ein bezüglich Klimaveränderungen besonders sensitives Gebiet, d.h. die globale Erwärmung wirkt sich aufgrund der saisonal hochvariablen Strahlungsbedingungen und der Bodenalbedo dort verstärkt aus.Wolken und Aerosole als Bestandteile der arktischen Atmosphäre spielen dabei eine besondere Rolle im Strahlungsgleichgewicht. Die vorliegende Promotionsarbeit leistet mit Hilfe von LIDAR-Messungen (Light Detection and Ranging) einen Beitrag zum Verständnis von Vorkommen und Eigenschaften von Aerosolschichten über Ny-Ålesund, Spitzbergen. Besonderes Augenmerk liegt dabei auf der Analyse von Zeiträumen mit erhöhter Aerosolbelastung. Es wurde zum einen die arktische Troposphäre zweier Frühjahre (März und April der Jahre 2007 und 2009) untersucht, da im Frühjahr die Aerosol-optische Dicke (AOD) in der Arktis Maximalwerte erreicht. Zum anderen wurden stratosphärische Aerosolschichten vulkanischen Ursprungs analysiert, die in den Sommern 2008 und 2009 nach Ausbrüchen der Kasatochi und Sarychev Vulkane jeweils für mehrere Monate in der unteren Stratosphäre messbar waren. Das an der AWIPEV Forschungsstation betriebene Koldewey Aerosol Raman LIDAR (KARL), ein Instrument zur optischen Fernerkundung atmosphärischer Parameter mittels gepulster Laserstrahlung, wurde im Rahmen der Promotion grundlegend überarbeitet und mit einem neuen Teleskop sowie neuen Detektoroptiken versehen. Dies ermöglicht die Profilerfassung ab 450m über dem Meeresspiegel bis in die mittlere Stratosphäre. KARL liefert hochaufgelöste Messungen der Streueigenschaften von Aerosol- undWolkenteilchen (Rückstreuung, Extinktion und Depolarisation) sowieWasserdampfprofile in der unteren Troposphäre. Durch die Kombination von KARL Messungen mit Daten anderer Messgeräte an der AWIPEV Forschungsstation wie Radiosonden, Sonnenphotometer, Micro Pulse LIDAR und Fesselsonden wurde ein umfassender Datenbestand von Streuphänomenen in der arktischen Atmosphäre geschaffen. Die beiden genannten Frühjahreszeiträume März und April 2007 und 2009 wurden zunächst anhand meteorologischer Parameter, wie lokaler Temperatur- und Feuchteprofile sowie großskaliger Druckmuster und Luftmassenquellgebiete analysiert. Dabei konnte kein eindeutiger Zusammenhang zwischen Quellgebieten und erhöhter AOD festgestellt werden. In einem Vergleich zweier wolkenfreier Perioden im März 2007 und April 2009 war jedoch die höhere Aerosolbelastung in 2009 mit dem Transport von Luftmassen durch die innere Arktis verbunden. Aufgrund der begrenzten Lebensdauer von Aerosolen lässt das entweder Aerosol-Entstehungsprozesse in der Zentralarktis oder Transformationsprozesse während des Transportes nach Ny-Ålesund vermuten. Für Messungen am 4. April 2009 mit Maximalwerten der AOD von bis zu 0.12 konnte die Größe der Aerosolteilchen in verschiedenen Höhen mit Hilfe von Inversionsrechnungen abgeschätzt werden. Diese und andere betrachtete Fallstudien legen eine Unterscheidung von Aerosolereignissen in drei Kategorien nahe, die sich in ihrer Entstehung deutlich unterscheiden: Vertikal begrenzte Aeosolschichten in trockener Luft, zeitlich hochvariable feuchte Aerosolschichten in der planetaren Grenzschicht sowie eine erhöhte Aerosolbelastung über große Teile der Troposphäre. Für das sehr klare Frühjahr 2007 wurden die vorhandenen KARL-Daten mit Hilfe eines Klassifikationsschemas, das auf den optischen Eigenschaften der streuenden Teilchen beruht, statistisch ausgewertet. Das verwendete Schema wurde mit Hilfe von verschiedenen Fallstudien validiert und ermöglicht bei Anwendung auf größere Datenbestände eine aussagekräftige Analyse von jährlichen Schwankungen der Aerosol- und Wolkenvorkommen über Ny-Ålesund. Die Ausbrüche zweier Vulkane in der nördlichen Hemisphäre im August 2008 und im Juni 2009 erlaubten die Analyse vulkanischer Aerosolschichten in der Stratosphäre. Die zeitliche Entwicklung der stratosphärischen AOD verlief in beiden Jahren ähnlich mit Maximalwerten von über 0.1 etwa drei bis fünfWochen nach dem jeweiligen Ausbruch. In beiden Jahren wurden bis zum technisch bedingten Abbruch der Messungen jeweils Ende September erhöhte stratosphärische AOD Werte gemessen. Die niedrigste Aerosolschicht konnte jeweils direkt an der Tropopause detektiert werden. Im Jahr 2008 wurden bis zu drei Schichten detektiert, die Struktur 2009 war durch bis zu sechs schmale Schichten gekennzeichnet, die nach etwa zwei Monaten zu einer breiten Schicht verschmierten. Drei Fallstudien zu mikrophysikalischen Aerosoleigenschaften wurden durchgeführt. Dabei wurden für beide Jahre sehr große Brechungsindices von m=(1.53–1.55) - 0.02i ermittelt, die auf eine absorbierende Kohlenstoffkomponente der Vulkanaerosole hinweisen. Der errechnete Teilchenradius war ebenfalls in beiden Jahren vergleichbar mit Werten zwischen 0.16 und 0.19 μm. 2009 wurde zusätzlich ein zweites Maximum der Größenverteilung bei ca. 0.5μm gefunden. Die Langzeitmessungen mit dem Koldewey Aerosol Raman LIDAR KARL in Ny-Ålesund schaffen die Möglichkeit, arktische Aerosole in Troposphäre und Stratosphäre nicht nur in Fallstudien, sondern auch über längere Zeiträume hinweg zu analysieren. Im Rahmen dieser Promotionsarbeit konnten sowohl Aerosolvorkommen in der arktischen Troposphäre im Frühjahr als auch eine vulkanisch bedingte erhöhte Aerosolbelastung in der Stratosphäre qualitativ und quantitativ beschrieben werden. Fallstudien und die Kombination mit Daten anderer Messgeräte ermöglichten Analysen mikrophysikalischer Aerosolparameter und deren Entwicklungsprozesse. KW - Arktis KW - Lidar KW - Aerosole KW - Fernerkundung KW - Arctic KW - Lidar KW - Aerosols KW - Remote Sensing Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52426 ER -