TY - THES A1 - Zemanová, Lucia T1 - Structure-function relationship in hierarchical model of brain networks T1 - Das Verhältnis von Struktur und Funktion in hierarchischem Model der Hirn-Netzwerken N2 - The mammalian brain is, with its numerous neural elements and structured complex connectivity, one of the most complex systems in nature. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex networks. Here, we try to shed some light on the relationship between structural and functional connectivities by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the cortical areas by a subnetwork of interacting excitable neurons (multilevel model) and by a neural mass model (population model). With weak couplings, the multilevel model displays biologically plausible dynamics and the synchronization patterns reveal a hierarchical cluster organization in the network structure. We can identify a group of brain areas involved in multifunctional tasks by comparing the dynamical clusters to the topological communities of the network. With strong couplings of multilevel model and by using neural mass model, the dynamics are characterized by well-defined oscillations. The synchronization patterns are mainly determined by the node intensity (total input strengths of a node); the detailed network topology is of secondary importance. The biologically improved multilevel model exhibits similar dynamical patterns in the two regimes. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks. N2 - Das Gehirn von Säugetieren stellt mit seinen zahlreichen, hochgradig vernetzten Neuronen ein natürliches Netzwerk von immenser Komplexität dar. In der jüngsten Vergangenheit sind die großflächige kortikale Konnektivitäten, sowohl unter strukturellen wie auch funktionalen Gesichtspunkten, in den Fokus der Forschung getreten. Die Verwendung von komplexe Netzwerke spielt hierbei eine entscheidende Rolle. In der vorliegenden Dissertation versuchen wir, das Verhältnis von struktureller und funktionaler Konnektivität durch Untersuchung der Synchronisationsdynamik anhand eines realistischen Modells der Konnektivität im Kortex einer Katze näher zu beleuchten. Wir modellieren die Kortexareale durch ein Subnetzwerk interagierender, erregbarer Neuronen (multilevel model) und durch ein Modell von Neuronenensembles (population model). Bei schwacher Kopplung zeigt das multilevel model eine biologisch plausible Dynamik und die Synchronisationsmuster lassen eine hierarchische Organisation der Netzwerkstruktur erkennen. Indem wir die dynamischen Cluster mit den topologischen Einheiten des Netzwerks vergleichen, sind wir in der Lage die Hirnareale, die an der Bewältigung komplexer Aufgaben beteiligt sind, zu identifizieren. Bei starker Kopplung im multilevel model und unter Verwendung des Ensemblemodells weist die Dynamik klare Oszillationen auf. Die Synchronisationsmuster werden hauptsächlich durch die Eingangsstärke an den einzelnen Knoten bestimmt, während die genaue Netzwerktopologie zweitrangig ist. Eine Erweiterung des Modells auf andere biologisch relevante Faktoren bestätigt die vorherigen Ergebnisse. Die Untersuchung der Synchronisation in einem multilevel model des Kortex ermöglicht daher tiefere Einblicke in die Zusammenhänge zwischen Netzwerktopologie und funktionaler Organisation in komplexen Hirn-Netzwerken. KW - komplexe Hirnnetzwerke KW - Verhältnis der Struktur und Funktion KW - hierarchisches Model KW - Synchronization KW - complex brain networks KW - structur-function relationship KW - hierarchical model KW - synchronization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18400 ER - TY - THES A1 - Yeldesbay, Azamat T1 - Complex regimes of synchronization T1 - Komplexe Synchronisationszustände BT - modeling and analysis N2 - Synchronization is a fundamental phenomenon in nature. It can be considered as a general property of self-sustained oscillators to adjust their rhythm in the presence of an interaction. In this work we investigate complex regimes of synchronization phenomena by means of theoretical analysis, numerical modeling, as well as practical analysis of experimental data. As a subject of our investigation we consider chimera state, where due to spontaneous symmetry-breaking of an initially homogeneous oscillators lattice split the system into two parts with different dynamics. Chimera state as a new synchronization phenomenon was first found in non-locally coupled oscillators system, and has attracted a lot of attention in the last decade. However, the recent studies indicate that this state is also possible in globally coupled systems. In the first part of this work, we show under which conditions the chimera-like state appears in a system of globally coupled identical oscillators with intrinsic delayed feedback. The results of the research explain how initially monostable oscillators became effectivly bistable in the presence of the coupling and create a mean field that sustain the coexistence of synchronized and desynchronized states. Also we discuss other examples, where chimera-like state appears due to frequency dependence of the phase shift in the bistable system. In the second part, we make further investigation of this topic by modeling influence of an external periodic force to an oscillator with intrinsic delayed feedback. We made stability analysis of the synchronized state and constructed Arnold tongues. The results explain formation of the chimera-like state and hysteric behavior of the synchronization area. Also, we consider two sets of parameters of the oscillator with symmetric and asymmetric Arnold tongues, that correspond to mono- and bi-stable regimes of the oscillator. In the third part, we demonstrate the results of the work, which was done in collaboration with our colleagues from Psychology Department of University of Potsdam. The project aimed to study the effect of the cardiac rhythm on human perception of time using synchronization analysis. From our part, we made a statistical analysis of the data obtained from the conducted experiment on free time interval reproduction task. We examined how ones heartbeat influences the time perception and searched for possible phase synchronization between heartbeat cycles and time reproduction responses. The findings support the prediction that cardiac cycles can serve as input signals, and is used for reproduction of time intervals in the range of several seconds. N2 - Synchronisation ist ein fundamentales Naturphänomen. Es ist die grundlegende Eigenschaft sich selbsterhaltender Oszillatoren, in Gegenwart einer Wechselwirkung, danach zu streben, ihre Rhythmen anzupassen. In dieser Arbeit betrachten wir komplexe Synchronisationszustände sowohl mit Hilfe analytischer Methoden als auch durch numerische Simulation und in experimentellen Daten. Unser Untersuchungsobjekt sind die sogenannten Chimera Zustände, in welchen sich Ensemble von gekoppelten, identischen Oszillatoren auf Grund eines Symmetriebruches spontan in Gruppen mit unterschiedlicher Dynamik aufteilen. Die Entdeckung von Chimeras in zunächst nichtlokal gekoppelten Systemen hat in den letzten zehn Jahren ein großes Interesse an neuartigen Synchronisationsphänomenen geweckt. Neueste Forschungsergebnisse belegen, dass diese Zustände unter bestimmten Bedingungen auch in global gekoppelten Systemen existieren können. Solche Bedingungen werden im ersten Teil der Arbeit in Ensemblen global gekoppelter Oszillatoren mit zusätzlicher, zeitverzögerter Selbstkopplung untersucht. Wir zeigen, wie zunächst monostabile Oszillatoren in Gegenwart von dem Treiben der globalen Kopplung effektiv bistabil werden, und sich so in zwei Gruppen organisieren. Das mittlere Feld, welches durch diese Gruppen aufgebaut wird, ist quasiperiodisch wodurch der Chimera Zustand sich selbst stabilisiert. In einem anderen Beispiel zeigen wir, dass der Chimera Zustand auch durch einen frequenzabhängigen Phasenunterschied in der globalen Kopplung erreicht werden kann. Zur genaueren Untersuchung der Mechanismen, die zur effektiven Bistabilität führen, betrachten wir im zweiten Teil der Arbeit den Einfluss einer externen periodischen Kraft auf einzelne Oszillatoren mit zeitverzögerter Selbstkopplung. Wir führen die Stabilitätanalyse des synchronen Zustands durch, und stellen die Arnoldzunge dar. Im dritten Teil der Arbeit stellen wir die Ergebnisse einer Synchronisationsanalyse vor, welche in Kooperation mit Wissenschaftlern der Psychologischen Fakultät der Universität Potsdam durchgeführt wurde. In dem Projekt wurde die Auswirkung des Herzrhythmus auf die menschliche Zeitwahrnehmung erforscht. Unsere Aufgabe war es, die experimentellen Daten statistisch zu analysieren. Im Experiment sollten Probanden ein gegebenes Zeitintervall reproduzieren während gleichzeitig ihr Herzschlag aufgezeichnet wurde. Durch eine Phasenanalyse haben wir den Zusammenhang zwischen dem Herzschlag und der Start- bzw. Stoppzeit der zu reproduzierenden Zeitintervalle untersucht. Es stellt sich heraus, dass Herzschläge bei Zeitintervallen über einige Sekunden als Taktgeber dienen können. KW - synchronization KW - phase oscillators KW - chimera state KW - time perception KW - Synchronisation KW - Phasen Oszillatoren KW - chimera Zustände KW - zeitverzögerte Selbstkopplung KW - Synchronisationsanalyse KW - Zeitwahrnehmung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-73348 ER - TY - JOUR A1 - Vlasov, Vladimir A1 - Komarov, Maxim A1 - Pikovskij, Arkadij T1 - Synchronization transitions in ensembles of noisy oscillators with bi-harmonic coupling JF - Journal of physics : A, Mathematical and theoretical N2 - We describe synchronization transitions in an ensemble of globally coupled phase oscillators with a bi-harmonic coupling function, and two sources of disorder-diversity of the intrinsic oscillators' frequencies, and external independent noise forces. Based on the self-consistent formulation, we derive analytic solutions for different synchronous states. We report on various non-trivial transitions from incoherence to synchrony, with the following possible scenarios: simple supercritical transition (similar to classical Kuramoto model); subcritical transition with large area of bistability of incoherent and synchronous solutions; appearance of a symmetric two-cluster solution which can coexist with the regular synchronous state. We show that the interplay between relatively small white noise and finite-size fluctuations can lead to metastability of the asynchronous solution. KW - synchronization KW - bi-harmonic coupling KW - noise Y1 - 2015 U6 - https://doi.org/10.1088/1751-8113/48/10/105101 SN - 1751-8113 SN - 1751-8121 VL - 48 IS - 10 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Vlasov, Vladimir T1 - Synchronization of oscillatory networks in terms of global variables T1 - Synchronisation in Netzwerken von Oszillatoren via globaler Variabler N2 - Synchronization of large ensembles of oscillators is an omnipresent phenomenon observed in different fields of science like physics, engineering, life sciences, etc. The most simple setup is that of globally coupled phase oscillators, where all the oscillators contribute to a global field which acts on all oscillators. This formulation of the problem was pioneered by Winfree and Kuramoto. Such a setup gives a possibility for the analysis of these systems in terms of global variables. In this work we describe nontrivial collective dynamics in oscillator populations coupled via mean fields in terms of global variables. We consider problems which cannot be directly reduced to standard Kuramoto and Winfree models. In the first part of the thesis we adopt a method introduced by Watanabe and Strogatz. The main idea is that the system of identical oscillators of particular type can be described by a low-dimensional system of global equations. This approach enables us to perform a complete analytical analysis for a special but vast set of initial conditions. Furthermore, we show how the approach can be expanded for some nonidentical systems. We apply the Watanabe-Strogatz approach to arrays of Josephson junctions and systems of identical phase oscillators with leader-type coupling. In the next parts of the thesis we consider the self-consistent mean-field theory method that can be applied to general nonidentical globally coupled systems of oscillators both with or without noise. For considered systems a regime, where the global field rotates uniformly, is the most important one. With the help of this approach such solutions of the self-consistency equation for an arbitrary distribution of frequencies and coupling parameters can be found analytically in the parametric form, both for noise-free and noisy cases. We apply this method to deterministic Kuramoto-type model with generic coupling and an ensemble of spatially distributed oscillators with leader-type coupling. Furthermore, with the proposed self-consistent approach we fully characterize rotating wave solutions of noisy Kuramoto-type model with generic coupling and an ensemble of noisy oscillators with bi-harmonic coupling. Whenever possible, a complete analysis of global dynamics is performed and compared with direct numerical simulations of large populations. N2 - Die Synchronisation einer großen Menge von Oszillatoren ist ein omnipräsentes Phänomen, das in verschiedenen Forschungsgebieten wie Physik, Ingenieurwissenschaften, Medizin und Weiteren beobachtet wird. In der einfachsten Situation ist von einer Menge Phasenoszillatoren jeder mit dem Anderen gekoppelt und trägt zu einem gemeinsamen Feld (dem sogenannten mean field) bei, das auf alle Oszillatoren wirkt. Dieser Formulierung wurde von Winfree und Kuramoto der Weg bereitet und sie birgt die Möglichkeit einer Analyse des Systems mithilfe von globalen Variablen. In dieser Arbeit beschreiben wir mithilfe globaler Variablen die nicht-triviale kollektive Dynamik von Oszillatorpopulationen, welche mit einem mean field verbunden sind. Wir beschäftigen uns mit Problemen die nicht direkt auf die Standardmodelle von Kuramoto und Winfree reduziert werden können. Im ersten Teil der Arbeit verwenden wir eine Methode die auf Watanabe und Stro- gatz zurückgeht. Die Hauptidee ist, dass ein System von identischen Oszillatoren eines bestimmten Typs durch ein niedrig-dimensionales System von globalen Gleichungen beschrieben werden kann. Dieser Ansatz versetzt uns in die Lage eine vollständige analytische Untersuchung für eine spezielle jedoch große Menge an Anfangsbedingungen durchzuführen. Wir zeigen des Weiteren wie der Ansatz auf nicht-identische Systeme erweitert werden kann. Wir wenden die Methode von Watanabe und Strogatz auf Reihen von Josephson-Kontakten und auf identische Phasenoszillatoren mit einer Anführer-Kopplung an. Im nächsten Teil der Arbeit betrachten wir eine selbst-konsistente mean-field-Methode, die auf allgemeine nicht-identische global gekoppelte Phasenoszillatoren mit oder ohne Rauschen angewendet werden kann. Für die betrachteten Systeme gibt es ein Regime, in dem die globalen Felder gleichförmig rotieren. Dieses ist das wichtigste Regime. Es kann mithilfe unseres Ansatzes als Lösung einer Selbstkonsistenzgleichung für beliebige Verteilungen der Frequenzen oder Kopplungsstärken gefunden werden. Die Lösung liegt in einer analytischen, parametrischen Form sowohl für den Fall mit Rauschen, als auch für den Fall ohne Rauschen, vor. Die Methode wird auf ein deterministisches System der Kuramoto-Art mit generischer Kopplung und auf ein Ensemble von räumlich verteilten Oszillatoren mit Anführer-Kopplung angewendet. Zuletzt sind wir in der Lage, die Rotierende-Wellen-Lösungen der Kuramoto-artigen Modelle mit generischer Kopplung, sowie ein Ensemble von verrauschten Oszillatoren mit bi-harmonischer Kopplung, mithilfe des von uns vorgeschlagenen selbst-konsistenten Ansatzes vollständig zu charakterisieren. Wann immer es möglich war, wurde eine vollständige Untersuchung der globalen Dynamik durchgeführt und mit numerischen Ergebnissen von großen Populationen verglichen. KW - synchronization KW - Synchronisation KW - complex networks KW - komplexe Netzwerke KW - global description Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-78182 ER - TY - JOUR A1 - van Velzen, Ellen A1 - Thieser, Tamara A1 - Berendonk, Thomas U. A1 - Weitere, Markus A1 - Gaedke, Ursula T1 - Inducible defense destabilizes predator–prey dynamics BT - the importance of multiple predators JF - Oikos N2 - Phenotypic plasticity in prey can have a dramatic impact on predator-prey dynamics, e.g. by inducible defense against temporally varying levels of predation. Previous work has overwhelmingly shown that this effect is stabilizing: inducible defenses dampen the amplitudes of population oscillations or eliminate them altogether. However, such studies have neglected scenarios where being protected against one predator increases vulnerability to another (incompatible defense). Here we develop a model for such a scenario, using two distinct prey phenotypes and two predator species. Each prey phenotype is defended against one of the predators, and vulnerable to the other. In strong contrast with previous studies on the dynamic effects of plasticity involving a single predator, we find that increasing the level of plasticity consistently destabilizes the system, as measured by the amplitude of oscillations and the coefficients of variation of both total prey and total predator biomasses. We explain this unexpected and seemingly counterintuitive result by showing that plasticity causes synchronization between the two prey phenotypes (and, through this, between the predators), thus increasing the temporal variability in biomass dynamics. These results challenge the common view that plasticity should always have a stabilizing effect on biomass dynamics: adding a single predator-prey interaction to an established model structure gives rise to a system where different mechanisms may be at play, leading to dramatically different outcomes. KW - phenotypic plasticity KW - inducible defense KW - stability KW - synchronization KW - predator-prey dynamics Y1 - 2018 U6 - https://doi.org/10.1111/oik.04868 SN - 0030-1299 SN - 1600-0706 VL - 127 IS - 11 SP - 1551 EP - 1562 PB - Wiley CY - Hoboken ER - TY - THES A1 - Tönjes, Ralf T1 - Pattern formation through synchronization in systems of nonidentical autonomous oscillators T1 - Musterbildung durch Synchronisation in Systemen nicht identischer, autonomer Oszillatoren N2 - This work is concerned with the spatio-temporal structures that emerge when non-identical, diffusively coupled oscillators synchronize. It contains analytical results and their confirmation through extensive computer simulations. We use the Kuramoto model which reduces general oscillatory systems to phase dynamics. The symmetry of the coupling plays an important role for the formation of patterns. We have studied the ordering influence of an asymmetry (non-isochronicity) in the phase coupling function on the phase profile in synchronization and the intricate interplay between this asymmetry and the frequency heterogeneity in the system. The thesis is divided into three main parts. Chapter 2 and 3 introduce the basic model of Kuramoto and conditions for stable synchronization. In Chapter 4 we characterize the phase profiles in synchronization for various special cases and in an exponential approximation of the phase coupling function, which allows for an analytical treatment. Finally, in the third part (Chapter 5) we study the influence of non-isochronicity on the synchronization frequency in continuous, reaction diffusion systems and discrete networks of oscillators. N2 - Die vorliegende Arbeit beschäftigt sich in Theorie und Simulation mit den raum-zeitlichen Strukturen, die entstehen, wenn nicht-identische, diffusiv gekoppelte Oszillatoren synchronisieren. Wir greifen dabei auf die von Kuramoto hergeleiteten Phasengleichungen zurück. Eine entscheidene Rolle für die Musterbildung spielt die Symmetrie der Kopplung. Wir untersuchen den ordnenden Einfluss von Asymmetrie (Nichtisochronizität) in der Phasenkopplungsfunktion auf das Phasenprofil in Synchronisation und das Zusammenspiel zwischen dieser Asymmetrie und der Frequenzheterogenität im System. Die Arbeit gliedert sich in drei Hauptteile. Kapitel 2 und 3 beschäftigen sich mit den grundlegenden Gleichungen und den Bedingungen für stabile Synchronisation. Im Kapitel 4 charakterisieren wir die Phasenprofile in Synchronisation für verschiedene Spezialfälle sowie in der von uns eingeführten exponentiellen Approximation der Phasenkopplungsfunktion. Schliesslich untersuchen wir im dritten Teil (Kap.5) den Einfluss von Nichtisochronizität auf die Synchronisationsfrequenz in kontinuierlichen, oszillatorischen Reaktions-Diffusionssystemen und diskreten Netzwerken von Oszillatoren. KW - Synchronisation KW - Musterbildung KW - Phasen-Gleichungen KW - Phasen-Oszillatoren KW - Kuramoto Modell KW - synchronization KW - pattern formation KW - phase equations KW - phase oscillators KW - Kuramoto model Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15973 ER - TY - THES A1 - Topaj, Dmitri T1 - Synchronization transitions in complex systems N2 - Gegenstand dieser Arbeit ist die Untersuchung generischer Synchronisierungsphänomene in interagierenden komplexen Systemen. Diese Phänomene werden u.a. in gekoppelten deterministischen chaotischen Systemen beobachtet. Bei sehr schwachen Interaktionen zwischen individuellen Systemen kann ein Übergang zum schwach kohärenten Verhalten der Systeme stattfinden. In gekoppelten zeitkontinuierlichen chaotischen Systemen manifestiert sich dieser Übergang durch den Effekt der Phasensynchronisierung, in gekoppelten chaotischen zeitdiskreten Systemen durch den Effekt eines nichtverschwindenden makroskopischen Feldes. Der Übergang zur Kohärenz in einer Kette lokal gekoppelter Oszillatoren, beschrieben durch Phasengleichungen, wird im Bezug auf die Symmetrien des Systems untersucht. Es wird gezeigt, daß die durch die Symmetrien verursachte Reversibilität des Systems nichttriviale topologische Eigenschaften der Trajektorien bedingt, so daß das als dissipativ konstruierte System in einem ganzen Parameterbereich quasi-Hamiltonische Züge aufweist, d.h. das Phasenvolumen ist im Schnitt erhalten, und die Lyapunov-Exponenten sind paarweise symmetrisch. Der Übergang zur Kohärenz in einem Ensemble global gekoppelter chaotischer Abbildungen wird durch den Verlust der Stabilität des entkoppelten Zustandes beschrieben. Die entwickelte Methode besteht darin, die Selbstkonsistenz des makroskopischen Feldes aufzuheben, und das Ensemble in Analogie mit einem Verstärkerschaltkreis mit Rückkopplung durch eine komplexe lineare Übertragungssfunktion zu charakterisieren. Diese Theorie wird anschließend für einige theoretisch interessanten Fälle verallgemeinert. N2 - Subject of this work is the investigation of generic synchronization phenomena in interacting complex systems. These phenomena are observed, among all, in coupled deterministic chaotic systems. At very weak interactions between individual systems a transition to a weakly coherent behavior of the systems can take place. In coupled continuous time chaotic systems this transition manifests itself with the effect of phase synchronization, in coupled chaotic discrete time systems with the effect of non-vanishing macroscopic mean field. Transition to coherence in a chain of locally coupled oscillators described with phase equations is investigated with respect to the symmetries in the system. It is shown that the reversibility of the system caused by these symmetries results to non-trivial topological properties of trajectories so that the system constructed to be dissipative reveals in a whole parameter range quasi-Hamiltonian features, i.e. the phase volume is conserved on average and Lyapunov exponents come in symmetric pairs. Transition to coherence in an ensemble of globally coupled chaotic maps is described with the loss of stability of the disordered state. The method is to break the self-consistensy of the macroscopic field and to characterize the ensemble in analogy to an amplifier circuit with feedback with a complex linear transfer function. This theory is then generalized for several cases of theoretic interest. KW - Synchronisierung KW - komplex KW - System KW - komplexe Systeme KW - gekoppelt KW - chaotisch KW - Chaos KW - Interaktion KW - Übergang KW - P hasensynchronisierung KW - Phase KW - Feld KW - Effekt KW - synchronization KW - complex KW - system KW - complex systems KW - coupled KW - chaotic KW - chaos KW - interaction KW - transition KW - phase KW - phase synchronization KW - field KW - meanfield KW - o Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000367 ER - TY - BOOK A1 - Schreiber, Robin A1 - Krahn, Robert A1 - Ingalls, Daniel H. H. A1 - Hirschfeld, Robert T1 - Transmorphic T1 - Transmorphic BT - mapping direct manipulation to source code transformations BT - Abbilden von direkter Manipulation zu Transformationen im Programmtext N2 - Defining Graphical User Interfaces (GUIs) through functional abstractions can reduce the complexity that arises from mutable abstractions. Recent examples, such as Facebook's React GUI framework have shown, how modelling the view as a functional projection from the application state to a visual representation can reduce the number of interacting objects and thus help to improve the reliabiliy of the system. This however comes at the price of a more rigid, functional framework where programmers are forced to express visual entities with functional abstractions, detached from the way one intuitively thinks about the physical world. In contrast to that, the GUI Framework Morphic allows interactions in the graphical domain, such as grabbing, dragging or resizing of elements to evolve an application at runtime, providing liveness and directness in the development workflow. Modelling each visual entity through mutable abstractions however makes it difficult to ensure correctness when GUIs start to grow more complex. Furthermore, by evolving morphs at runtime through direct manipulation we diverge more and more from the symbolic description that corresponds to the morph. Given that both of these approaches have their merits and problems, is there a way to combine them in a meaningful way that preserves their respective benefits? As a solution for this problem, we propose to lift Morphic's concept of direct manipulation from the mutation of state to the transformation of source code. In particular, we will explore the design, implementation and integration of a bidirectional mapping between the graphical representation and a functional and declarative symbolic description of a graphical user interface within a self hosted development environment. We will present Transmorphic, a functional take on the Morphic GUI Framework, where the visual and structural properties of morphs are defined in a purely functional, declarative fashion. In Transmorphic, the developer is able to assemble different morphs at runtime through direct manipulation which is automatically translated into changes in the code of the application. In this way, the comprehensiveness and predictability of direct manipulation can be used in the context of a purely functional GUI, while the effects of the manipulation are reflected in a medium that is always in reach for the programmer and can even be used to incorporate the source transformations into the source files of the application. N2 - Das Definieren von graphischen Benutzeroberflächen mittels funktionaler Abstraktionen, kann die Komplexität der Verwaltung des Zustandes der Anwendung erheblich reduzieren. Aktuelle Beispiele, wie Facebook's Framework *React*, zeigen auf, wie das modellieren der visuellen Schnittstelle als eine funktionale Projektion vom Zustand der Anwendung zur graphischen Repräsentation, die Anzahl der agierenden Objekte erheblich reduzieren und so die Verlässlichkeit des Systems erhöhen kann. Der Preis für die so erreichte Stabilität, ist eine relativ statische graphische Repräsentation, die sich zur Laufzeit nicht dynamisch anpassen lässt und in der jede visuelle Entität nur mittles funktionaler Abstraktionen beschrieben werden kann, was nicht unserem intuitiven Verständnis der Welt entspricht. Im Gegensatz dazu, erlaubt das Rahmenwerk Morphic mittles Interaktionen wie Ziehen, Greifen oder Skalieren von visuellen Elementen, die grahische Darstellung der Anwendung zur Laufzeit in einer unmittelbaren ("live") und direkten Art und Weise weiter zu entwickeln. Um diese Flexibilität zu erreichen, modelliert Morphic allerdings jedes graphische Objekt mittels veränderlichem Zustand, was das Garantieren der Fehlerfreiheit von graphischen Oberfläche, insbesondere bei sehr komplexen Schnittstellen, deutlich erschwehrt. Hinzu kommt, dass die dynamischen Anpassungen zur Laufzeit dazu führen, dass sich die Oberfläche mehr und mehr von ihrer ursprünglichen symbolischen Definition entfernt, da Morphic von selbst die Änderungen in der Laufzeit nicht im Quellcode reflektieren kann. Die Frage ist also ob es eine Kombination beider Ansätze gibt, welche es vermag die Vorteile zu erhalten und Nachteile wenn möglich auszugleichen. Als Lösung für dieses Problem schlagen wir vor das Konzept der direkten Manipulation aus Morphic auf Transformationen im Quellcode zu übertragen. Hierfür werden wir das Design, die Implementierung und Integration einer bidirektionalen Abbildung zwischen graphischer Darstellung und einer funktionalen, deklarativen symbolischen Beschreibung in einer selbsterhaltenden Entwicklungsumgebung erörtern. Wir werden Transmorphic vorstellen, eine funktionale Variante des Morphic Frameworks, in der visuelle und strukturelle Eigenschaften in einer strikt funktionalen und daher deklarativen Art und Weise definiert werden. Innerhalb von Transmorphic hat der Entwickler die Möglichkeit verschieden Morphs zur Laufzeit mittels direkter Manipulation zusammenzusetzen, was direkt zu Änderungen im Quellcode der Anwendung übersetzt wird. Auf diese Weise kann die verständliche und nachvollziehbare direkte Interaktion aus Morphic, im Kontext einer vollständig funktional beschriebenen graphischen Benutzeroberfläche verwendet werden. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 110 KW - functional programming KW - morphic KW - functional lenses KW - direct manipulation KW - synchronization KW - FRP KW - reactive KW - immutable values KW - live programming KW - funktionale Programmierung KW - Morphic KW - Functional Lenses KW - direkte Manipulation KW - Synchronisation KW - FRP KW - reaktive Programmierung KW - Unveränderlichkeit KW - Live-Programmierung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98300 SN - 978-3-86956-387-9 SN - 1613-5652 SN - 2191-1665 IS - 110 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Schaefer, Laura A1 - Bittmann, Frank T1 - Paired personal interaction reveals objective differences between pushing and holding isometric muscle action T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80% MVIC) and two fatiguing trials (90% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A “HIMA failure” occurred in 85% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 714 KW - neural-control KW - task failure KW - lengthening contractions KW - force KW - oscillations KW - load KW - time KW - synchronization KW - activation KW - principles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-519119 SN - 1866-8364 IS - 714 ER - TY - JOUR A1 - Schaefer, Laura A1 - Bittmann, Frank T1 - Paired personal interaction reveals objective differences between pushing and holding isometric muscle action JF - PLOS One N2 - In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80% MVIC) and two fatiguing trials (90% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A “HIMA failure” occurred in 85% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA. KW - neural-control KW - task failure KW - lengthening contractions KW - force KW - oscillations KW - load KW - time KW - synchronization KW - activation KW - principles Y1 - 2021 U6 - https://doi.org/10.1371/journal.pone.0238331 SN - 1932-6203 VL - 16 IS - 5 PB - PLOS CY - San Francisco ER -