TY - JOUR A1 - Zhou, Suqiong A1 - Pan, Yuanwei A1 - Zhang, Jianguang A1 - Li, Yan A1 - Neumann, Falko A1 - Schwerdtle, Tanja A1 - Li, Wenzhong A1 - Haag, Rainer T1 - Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells JF - Nanoscale N2 - Nanomaterials play an important role in mimicking the biochemical and biophysical cues of the extracellular matrix in human mesenchymal stem cells (MSCs). Increasing studies have demonstrated the crucial impact of functional groups on MSCs, while limited research is available on how the functional group's density on nanoparticles regulates MSC behavior. Herein, the effects of dendritic polyglycerol (dPG)-conjugated gold nanostars (GNSs) with different densities of functional groups on the osteogenesis of MSCs are systematically investigated. dPG@GNS nanocomposites have good biocompatibility and the uptake by MSCs is in a functional group density-dependent manner. The osteogenic differentiation of MSCs is promoted by all dPG@GNS nanocomposites, in terms of alkaline phosphatase activity, calcium deposition, and expression of osteogenic protein and genes. Interestingly, the dPGOH@GNSs exhibit a slight upregulation in the expression of osteogenic markers, while the different charged densities of sulfate and amino groups show more efficacy in the promotion of osteogenesis. Meanwhile, the sulfated nanostars dPGS20@GNSs show the highest enhancement. Furthermore, various dPG@GNS nanocomposites exerted their effects by regulating the activation of Yes-associated protein (YAP) to affect osteogenic differentiation. These results indicate that dPG@GNS nanocomposites have functional group density-dependent influence on the osteogenesis of MSCs, which may provide a new insight into regulating stem cell fate. Y1 - 2020 U6 - https://doi.org/10.1039/d0nr06570f SN - 2040-3364 SN - 2040-3372 VL - 12 IS - 47 SP - 24006 EP - 24019 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Witt, Barbara A1 - Stiboller, Michael A1 - Raschke, Stefanie A1 - Friese, Sharleen A1 - Ebert, Franziska A1 - Schwerdtle, Tanja T1 - Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers JF - Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS N2 - Background: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer?s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. Methods: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. Results: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 ?M) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. Conclusion: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases. KW - Copper KW - Astrocytes KW - Toxicity KW - Mitochondria KW - ROS KW - Trace elements Y1 - 2021 U6 - https://doi.org/10.1016/j.jtemb.2021.126711 SN - 1878-3252 VL - 65 PB - Elsevier CY - München ER - TY - JOUR A1 - Witt, Barbara A1 - Schaumlöffel, Dirk A1 - Schwerdtle, Tanja T1 - Subcellular Localization of Copper BT - Cellular Bioimaging with Focus on Neurological Disorders JF - International Journal of Molecular Sciences N2 - As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer’s disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences. KW - copper KW - cellular bioimaging KW - neurodegenerative diseases KW - copper-related disorders KW - SIMS techniques KW - TEM KW - S-XRF Y1 - 2020 U6 - https://doi.org/10.3390/ijms21072341 SN - 1422-0067 VL - 21 IS - 7 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Witt, Barbara A1 - Meyer, Sören A1 - Ebert, Franziska A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Toxicity of two classes of arsenolipids and their water-soluble metabolites in human differentiated neurons JF - Archives of toxicology : official journal of EUROTOX N2 - Arsenolipids are lipid-soluble organoarsenic compounds, mainly occurring in marine organisms, with arsenic-containing hydrocarbons (AsHCs) and arsenic-containing fatty acids (AsFAs) representing two major subgroups. Recently, toxicity studies of several arsenolipids showed a high cytotoxic potential of those arsenolipids in human liver and bladder cells. Furthermore, feeding studies with Drosophila melanogaster indicated an accumulation of arsenolipids in the fruit fly’s brain. In this study, the neurotoxic potential of three AsHCs, two AsFAs and three metabolites (dimethylarsinic acid, thio/oxo-dimethylarsenopropanoic acid) was investigated in comparison to the toxic reference arsenite (iAsIII) in fully differentiated human brain cells (LUHMES cells). Thereby, in the case of AsHCs both the cell number and cell viability were reduced in a low micromolar concentration range comparable to iAsIII, while AsFAs and the applied metabolites were less toxic. Mechanistic studies revealed that AsHCs reduced the mitochondrial membrane potential, whereas neither iAsIII nor AsFAs had an impact. Furthermore, neurotoxic mechanisms were investigated by examining the neuronal network. Here, AsHCs massively disturbed the neuronal network and induced apoptotic effects, while iAsIII and AsFAs showed comparatively lesser effects. Taking into account the substantial in vitro neurotoxic potential of the AsHCs and the fact that they could transfer across the physiological barriers of the brain, a neurotoxic potential in vivo for the AsHCs cannot be excluded and needs to be urgently characterized. KW - Arsenolipids KW - Neurons KW - Cytotoxicity KW - Neurotoxicity KW - Arsenic-containing hydrocarbons KW - Arsenic-containing fatty acids Y1 - 2017 U6 - https://doi.org/10.1007/s00204-017-1933-x SN - 0340-5761 SN - 1432-0738 VL - 91 SP - 3121 EP - 3134 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Witt, Barbara A1 - Ebert, Franziska A1 - Meyer, Sören A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Assessing neurodevelopmental effects of arsenolipids in pre-differentiated human neurons JF - Molecular nutrition & food research : bioactivity, chemistry, immunology, microbiology, safety, technology N2 - Scope: In the general population exposure to arsenic occurs mainly via diet. Highest arsenic concentrations are found in seafood, where arsenic is present predominantly in its organic forms including arsenolipids. Since recent studies have provided evidence that arsenolipids could reach the brain of an organism and exert toxicity in fully differentiated human neurons, this work aims to assess the neurodevelopmental toxicity of arsenolipids. Methods and results: Neurodevelopmental effects of three arsenic-containing hydrocarbons (AsHC), two arsenic-containing fatty acids (AsFA), arsenite and dimethylarsinic acid (DMA(V)) were characterized in pre-differentiated human neurons. AsHCs and arsenite caused substantial cytotoxicity in a similar, low concentration range, whereas AsFAs and DMA(V) were less toxic. AsHCs were highly accessible for cells and exerted pronounced neurodevelopmental effects, with neurite outgrowth and the mitochondrial membrane potential being sensitive endpoints; arsenite did not substantially decrease those two endpoints. In fully differentiated neurons, arsenite and AsHCs caused neurite toxicity. Conclusion: These results indicate for a neurodevelopmental potential of AsHCs. Taken into account the possibility that AsHCs might easily reach the developing brain when exposed during early life, neurotoxicity and neurodevelopmental toxicity cannot be excluded. Further studies are needed in order to progress the urgently needed risk assessment. KW - Arsenic-containing fatty acids KW - Arsenic-containing hydrocarbons KW - Arsenite KW - Arsenolipids KW - Neurodevelopmental toxicity Y1 - 2017 U6 - https://doi.org/10.1002/mnfr.201700199 SN - 1613-4125 SN - 1613-4133 VL - 61 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Witt, B. A1 - Bornhorst, Julia A1 - Mitze, H. A1 - Ebert, Franziska A1 - Meyer, S. A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Arsenolipids exert less toxicity in a human neuron astrocyte co-culture as compared to the respective monocultures JF - Metallomics : integrated biometal science N2 - Arsenic-containing hydrocarbons (AsHCs), natural products found in seafood, have recently been shown to exert toxic effects in human neurons. In this study we assessed the toxicity of three AsHCs in cultured human astrocytes. Due to the high cellular accessibility and substantial toxicity observed astrocytes were identified as further potential brain target cells for arsenolipids. Thereby, the AsHCs exerted a 5-19-fold higher cytotoxicity in astrocytes as compared to arsenite. Next we compared the toxicity of the arsenicals in a co-culture model of the respective human astrocytes and neurons. Notably the AsHCs did not show any substantial toxic effects in the co-culture, while arsenite did. The arsenic accessibility studies indicated that in the co-culture astrocytes protect neurons against cellular arsenic accumulation especially after incubation with arsenolipids. In summary, these data underline the importance of the glial-neuron interaction when assessing the in vitro neurotoxicity of new unclassified metal species. Y1 - 2017 U6 - https://doi.org/10.1039/c7mt00036g SN - 1756-5901 SN - 1756-591X VL - 9 SP - 442 EP - 446 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Winkelbeiner, Nicola Lisa A1 - Wandt, Viktoria Klara Veronika A1 - Ebert, Franziska A1 - Lossow, Kristina A1 - Bankoglu, Ezgi E. A1 - Martin, Maximilian A1 - Mangerich, Aswin A1 - Stopper, Helga A1 - Bornhorst, Julia A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice BT - Impact of Sex and Age JF - International Journal of Molecular Sciences N2 - Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2’-deoxyguanosine (8-oxodG), 5-hydroxy-2’-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery. KW - maintenance of genomic integrity KW - ageing KW - sex KW - DNA damage KW - base excision repair (incision activity) KW - DNA damage response KW - poly(ADP-ribosyl)ation KW - liver Y1 - 2020 U6 - https://doi.org/10.3390/ijms21186600 SN - 1422-0067 VL - 21 IS - 18 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Wehe, Christoph A. A1 - Pieper, Imke A1 - Holtkamp, Michael A1 - Thyssen, Georgina M. A1 - Sperling, Michael A1 - Schwerdtle, Tanja A1 - Karst, Uwe T1 - On-line species-unspecific isotope dilution analysis in the picomolar range reveals the time- and species-depending mercury uptake in human astrocytes JF - Analytical & bioanalytical chemistry N2 - In order to reveal the time-depending mercury species uptake by human astrocytes, a novel approach for total mercury analysis is presented, which uses an accelerated sample introduction system combined on-line with an inductively coupled plasma mass spectrometer equipped with a collision/reaction cell. Human astrocyte samples were incubated with inorganic mercury (HgCl2), methylmercury chloride (MeHgCl), and thimerosal. After 1-h incubation with Hg2+, cellular concentrations of 3 mu M were obtained, whereas for organic species, concentrations of 14-18 mu M could be found. After 24 h, a cellular accumulation factor of 0.3 was observed for the cells incubated with Hg2+, whereas the organic species both showed values of about 5. Due to the obtained steady-state signals, reliable results with relative standard deviations of well below 5 % and limits of detection in the concentration range of 1 ng L-1 were obtained using external calibration and species-unspecific isotope dilution analysis approaches. The results were further validated using atomic fluorescence spectrometry. KW - Mercury KW - Thimerosal KW - Astrocytes KW - ICP-MS KW - Isotope dilution analysis KW - Automation Y1 - 2014 U6 - https://doi.org/10.1007/s00216-013-7608-4 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 7 SP - 1909 EP - 1916 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Wandt, Viktoria Klara Veronika A1 - Winkelbeiner, Nicola Lisa A1 - Bornhorst, Julia A1 - Witt, Barbara A1 - Raschke, Stefanie A1 - Simon, Luise A1 - Ebert, Franziska A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A matter of concern BT - trace element dyshomeostasis and genomic stability in neurons JF - Redox Biology N2 - Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability Y1 - 2021 U6 - https://doi.org/10.1016/j.redox.2021.101877 VL - 41 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Volk, Christin A1 - Brandsch, Corinna A1 - Schlegelmilch, Ulf A1 - Wensch-Dorendorf, Monika A1 - Hirche, Frank A1 - Simm, Andreas A1 - Gargum, Osama A1 - Wiacek, Claudia A1 - Braun, Peggy G. A1 - Kopp, Johannes F. A1 - Schwerdtle, Tanja A1 - Treede, Hendrik A1 - Stangl, Gabriele I. T1 - Postprandial metabolic response to rapeseed protein in healthy subjects JF - Nutrients N2 - Plant proteins have become increasingly important for ecological reasons. Rapeseed is a novel source of plant proteins with high biological value, but its metabolic impact in humans is largely unknown. A randomized, controlled intervention study including 20 healthy subjects was conducted in a crossover design. All participants received a test meal without additional protein or with 28 g of rapeseed protein isolate or soy protein isolate (control). Venous blood samples were collected over a 360-min period to analyze metabolites; satiety was assessed using a visual analog scale. Postprandial levels of lipids, urea, and amino acids increased following the intake of both protein isolates. The postprandial insulin response was lower after consumption of the rapeseed protein than after intake of the soy protein (p< 0.05), whereas the postmeal responses of glucose, lipids, interleukin-6, minerals, and urea were comparable between the two protein isolates. Interestingly, the rapeseed protein exerted stronger effects on postprandial satiety than the soy protein (p< 0.05). The postmeal metabolism following rapeseed protein intake is comparable with that of soy protein. The favorable effect of rapeseed protein on postprandial insulin and satiety makes it a valuable plant protein for human nutrition. KW - rapeseed protein KW - soy protein KW - postprandial study KW - metabolic response KW - healthy subjects Y1 - 2020 U6 - https://doi.org/10.3390/nu12082270 SN - 2072-6643 VL - 12 IS - 8 PB - MDPI CY - Basel ER -