TY - JOUR A1 - Zurell, Damaris A1 - Jeltsch, Florian A1 - Dormann, Carsten F. A1 - Schröder-Esselbach, Boris T1 - Static species distribution models in dynamically changing systems : how good can predictions really be? N2 - SDM performance varied for different range dynamics. Prediction accuracies decreased when abrupt range shifts occurred as species were outpaced by the rate of climate change, and increased again when a new equilibrium situation was realised. When ranges contracted, prediction accuracies increased as the absences were predicted well. Far- dispersing species were faster in tracking climate change, and were predicted more accurately by SDMs than short- dispersing species. BRTs mostly outperformed GLMs. The presence of a predator, and the inclusion of its incidence as an environmental predictor, made BRTs and GLMs perform similarly. Results are discussed in light of other studies dealing with effects of ecological traits and processes on SDM performance. Perspectives are given on further advancements of SDMs and for possible interfaces with more mechanistic approaches in order to improve predictions under environmental change. Y1 - 2009 UR - http://www3.interscience.wiley.com/journal/117966123/home?CRETRY=1&SRETRY=0 U6 - https://doi.org/10.1111/j.1600-0587.2009.05810.x SN - 0906-7590 ER - TY - JOUR A1 - Zurell, Damaris A1 - Grimm, Volker A1 - Rossmanith, Eva A1 - Zbinden, Niklaus A1 - Zimmermann, Niklaus E. A1 - Schröder-Esselbach, Boris T1 - Uncertainty in predictions of range dynamics black grouse climbing the Swiss Alps JF - Ecography : pattern and diversity in ecology ; research papers forum N2 - Empirical species distribution models (SDMs) constitute often the tool of choice for the assessment of rapid climate change effects on species vulnerability. Conclusions regarding extinction risks might be misleading, however, because SDMs do not explicitly incorporate dispersal or other demographic processes. Here, we supplement SDMs with a dynamic population model 1) to predict climate-induced range dynamics for black grouse in Switzerland, 2) to compare direct and indirect measures of extinction risks, and 3) to quantify uncertainty in predictions as well as the sources of that uncertainty. To this end, we linked models of habitat suitability to a spatially explicit, individual-based model. In an extensive sensitivity analysis, we quantified uncertainty in various model outputs introduced by different SDM algorithms, by different climate scenarios and by demographic model parameters. Potentially suitable habitats were predicted to shift uphill and eastwards. By the end of the 21st century, abrupt habitat losses were predicted in the western Prealps for some climate scenarios. In contrast, population size and occupied area were primarily controlled by currently negative population growth and gradually declined from the beginning of the century across all climate scenarios and SDM algorithms. However, predictions of population dynamic features were highly variable across simulations. Results indicate that inferring extinction probabilities simply from the quantity of suitable habitat may underestimate extinction risks because this may ignore important interactions between life history traits and available habitat. Also, in dynamic range predictions uncertainty in SDM algorithms and climate scenarios can become secondary to uncertainty in dynamic model components. Our study emphasises the need for principal evaluation tools like sensitivity analysis in order to assess uncertainty and robustness in dynamic range predictions. A more direct benefit of such robustness analysis is an improved mechanistic understanding of dynamic species responses to climate change. Y1 - 2012 U6 - https://doi.org/10.1111/j.1600-0587.2011.07200.x SN - 0906-7590 VL - 35 IS - 7 SP - 590 EP - 603 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wintle, Brendan A. A1 - Bekessy, Sarah A. A1 - Keith, David A. A1 - van Wilgen, Brian W. A1 - Cabeza, Mar A1 - Schröder-Esselbach, Boris A1 - Carvalho, Silvia B. A1 - Falcucci, Alessandra A1 - Maiorano, Luigi A1 - Regan, Tracey J. A1 - Rondinini, Carlo A1 - Boitani, Luigi A1 - Possingham, Hugh P. T1 - Ecological-economic optimization of biodiversity conservation under climate change JF - Nature climate change N2 - Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions. Y1 - 2011 U6 - https://doi.org/10.1038/NCLIMATE1227 SN - 1758-678X VL - 1 IS - 7 SP - 355 EP - 359 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Vorpahl, Peter A1 - Elsenbeer, Helmut A1 - Märker, Michael A1 - Schröder-Esselbach, Boris T1 - How can statistical models help to determine driving factors of landslides? JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Landslides are a hazard for humans and artificial structures. From an ecological point of view, they represent an important ecosystem disturbance, especially in tropical montane forests. Here, shallow translational landslides are a frequent natural phenomenon and one local determinant of high levels of biodiversity. In this paper, we apply weighted ensembles of advanced phenomenological models from statistics and machine learning to analyze the driving factors of natural landslides in a tropical montane forest in South Ecuador. We exclusively interpret terrain attributes, derived from a digital elevation model, as proxies to several driving factors of landslides and use them as predictors in our models which are trained on a set of five historical landslide inventories. We check the model generality by transferring them in time and use three common performance criteria (i.e. AUC, explained deviance and slope of model calibration curve) to, on the one hand, compare several state-of-the-art model approaches and on the other hand, to create weighted model ensembles. Our results suggest that it is important to consider more than one single performance criterion. Approaching our main question, we compare responses of weighted model ensembles that were trained on distinct functional units of landslides (i.e. initiation, transport and deposition zones). This way, we are able to show that it is quite possible to deduce driving factors of landslides, if the consistency between the training data and the processes is maintained. Opening the 'black box' of statistical models by interpreting univariate model response curves and relative importance of single predictors regarding their plausibility, we provide a means to verify this consistency. With the exception of classification tree analysis, all techniques performed comparably well in our case study while being outperformed by weighted model ensembles. Univariate response curves of models trained on distinct functional units of landslides exposed different shapes following our expectations. Our results indicate the occurrence of landslides to be mainly controlled by factors related to the general position along a slope (i.e. ridge, open slope or valley) while landslide initiation seems to be favored by small scale convexities on otherwise plain open slopes. KW - Landslides KW - Tropical montane forests KW - Statistical modeling KW - Model comparison KW - Artificial neuronal network KW - Classification trees KW - Random forests KW - Boosted regression trees KW - Generalized linear models KW - Multivariate adaptive regression splines KW - Maximum entropy method KW - Weighted model ensembles Y1 - 2012 U6 - https://doi.org/10.1016/j.ecolmodel.2011.12.007 SN - 0304-3800 SN - 1872-7026 VL - 239 IS - 7 SP - 27 EP - 39 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Vorpahl, Peter A1 - Dislich, Claudia A1 - Elsenbeer, Helmut A1 - Märker, Michael A1 - Schröder-Esselbach, Boris T1 - Biotic controls on shallow translational landslides JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - In undisturbed tropical montane rainforests massive organic layers accommodate the majority of roots and only a small fraction of roots penetrate the mineral soil. We investigated the contribution of vegetation to slope stability in such environments by modifying a standard model for slope stability to include an organic layer with distinct mechanical properties. The importance of individual model parameters was evaluated using detailed measurements of soil and vegetation properties to reproduce the observed depth of 11 shallow landslides in the Andes of southern Ecuador. By distinguishing mineral soil, organic layer and above-ground biomass, it is shown that in this environment vegetation provides a destabilizing effect mainly due to its contribution to the mass of the organic layer (up to 973 t ha-1 under wet conditions). Sensitivity analysis shows that the destabilizing effect of the mass of soil and vegetation can only be effective on slopes steeper than 37.9 degrees. This situation applies to 36% of the study area. Thus, on the steep slopes of this megadiverse ecosystem, the mass of the growing forest promotes landsliding, which in turn promotes a new cycle of succession. This feedback mechanism is worth consideration in further investigations of the impact of landslides on plant diversity in similar environments. KW - shallow translational landslides KW - tropical montane forest KW - biomass KW - organic layer Y1 - 2013 U6 - https://doi.org/10.1002/esp.3320 SN - 0197-9337 VL - 38 IS - 2 SP - 198 EP - 212 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Tanneberger, Franziska A1 - Flade, Martin A1 - Preiksa, Zydrunas A1 - Schröder-Esselbach, Boris T1 - Habitat selection of the globally threatened Aquatic Warbler Acrocephalus paludicola at the western margin of its breeding range and implications for management N2 - The globally threatened Aquatic Warbler Acrocephalus paludicola is an umbrella species for fen mires and is at risk of extinction in its westernmost breeding population due to severe habitat loss. We used boosted regression trees to model Aquatic Warbler habitat selection in order to make recommendations for effective management of the last remnant habitats. Habitat data were collected in the years 2004-2006 in all remaining breeding sites in Pomerania (eastern Germany and western Poland) as well as in recently abandoned sites. Models were validated using data from similar Aquatic Warbler habitats in Lithuania. The probability of occurrence of Aquatic Warblers in late May/early June was positively associated with low isolation from other occupied sites, less eutrophic conditions, a high proportion of area mown early in the preceding year, high availability of vegetation 60-70 cm high, high prey abundance and high habitat heterogeneity. Early summer land management is needed in the more productive sites to prevent habitat deterioration by succession to higher and denser vegetation. As this also poses a serious threat to broods, management that creates a mosaic of early and late used patches is recommended to preserve and restore productive Aquatic Warbler sites. In less productive sites, winter mowing can maintain suitable habitat conditions. Aquatic Warbler-friendly land use supports a variety of other threatened plant and animal species typical of fens and sedge meadows and can meet the economic interests of local land users. Y1 - 2010 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1474-919X U6 - https://doi.org/10.1111/j.1474-919X.2010.01016.x SN - 0019-1019 ER - TY - JOUR A1 - Schulz, Jennifer J. A1 - Cayuela, Luis A1 - Rey-Benayas, Jose M. A1 - Schröder-Esselbach, Boris T1 - Factors influencing vegetation cover change in Mediterranean Central Chile (1975-2008) JF - Applied vegetation science : official organ of the International Association for Vegetation Science N2 - Questions: Which are the factors that influence forest and shrubland loss and regeneration and their underlying drivers? Location: Central Chile, a world biodiversity hotspot. Methods: Using land-cover data from the years 1975, 1985, 1999 and 2008, we fitted classification trees and multiple logistic regression models to account for the relationship between different trajectories of vegetation change and a range of biophysical and socio-economic factors. Results: The variables that most consistently showed significant effects on vegetation change across all time-intervals were slope and distance to primary roads. We found that forest and shrubland loss on one side and regeneration on the other often displayed opposite patterns in relation to the different explanatory variables. Deforestation was positively related to distance to primary roads and to distance within forest edges and was favoured by a low insolation and a low slope. In turn, forest regeneration was negatively related to the distance to primary roads and positively to the distance to the nearest forest patch, insolation and slope. Shrubland loss was positively influenced by slope and distance to cities and primary roads and negatively influenced by distance to rivers. Conversely, shrubland regeneration was negatively related to slope, distance to cities and distance to primary roads and positively related to distance from existing forest patches and distance to rivers. Conclusions: This article reveals how biophysical and socioeconomic factors influence vegetation cover change and the underlying social, political and economical drivers. This assessment provides a basis for management decisions, considering the crucial role of perennial vegetation cover for sustaining biodiversity and ecosystem services. KW - Deforestation KW - Driving forces KW - Forest regeneration KW - Land-cover change KW - Shrubland regeneration Y1 - 2011 U6 - https://doi.org/10.1111/j.1654-109X.2011.01135.x SN - 1402-2001 VL - 14 IS - 4 SP - 571 EP - 582 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Rudner, Michael A1 - Schröder-Esselbach, Boris A1 - Biedermann, Robert A1 - Müller, Mark T1 - Habitat modelling in GIMOLUS - webGIS-based e-learning modules using logistic regression to assess species- habitat relationships Y1 - 2003 UR - http://brandenburg.geoecology.uni-potsdam.de/users/schroeder/download/publications/ rudner_schroeder_biedermann_mueller_agit2003.pdf ER - TY - JOUR A1 - Richter, Dania A1 - Schröder-Esselbach, Boris A1 - Hartmann, Niklas K. A1 - Matuschka, Franz-Rainer T1 - Spatial stratification of various Lyme disease spirochetes in a Central European site JF - FEMS microbiology ecology N2 - To determine whether the genospecies composition of Lyme disease spirochetes is spatially stratified, we collected questing Ixodes ricinus ticks in neighboring plots where rodents, birds, and lizards were present as reservoir host and compared the prevalence of various genospecies. The overall prevalence of spirochetes in questing ticks varied across the study site. Borrelia lusitaniae appeared to infect adult ticks in one plot at the same frequency as did Borrelia afzelii in the other plots. The relative density of questing nymphal and adult ticks varied profoundly. Where lizards were exceedingly abundant, these vertebrates seemed to constitute the dominant host for nymphal ticks, contributing the majority of infected adult ticks. Because lizards support solely B.lusitaniae and appear to exclude other genospecies, their narrow genospecies association results in predominance of B.lusitaniae in sites where lizards are abundant, while limiting its spread to the host's habitat range. To the extent that Central European B.lusitaniae strains are nonpathogenic, the presence of numerous lizards should locally decrease risk of infection for people. Evaluation of regional risk of infection by Lyme disease spirochetes should take the spatial effect of hosts into consideration, which stratify the distribution of specifically infected ticks on a small scale. KW - Lyme disease KW - Borrelia lusitaniae KW - Borrelia afzelii KW - stratification KW - lizard KW - zooprophylaxis Y1 - 2013 U6 - https://doi.org/10.1111/1574-6941.12029 SN - 0168-6496 VL - 83 IS - 3 SP - 738 EP - 744 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Reineking, Björn A1 - Schröder-Esselbach, Boris T1 - Constrain to perform : regularization of habitat models N2 - Predictive habitat models are an important tool for ecological research and conservation. A major cause of unreliable models is excessive model complexity, and regularization methods aim to improve the predictive performance by adequately constraining model complexity. We compare three regularization methods for logistic regression: variable selection, lasso, and ridge. They differ in the way model complexity is measured: variable selection uses the number of estimated parameters, the lasso uses the sum of the absolute values of the parameter estimates, and the ridge uses the sum of the squared values of the parameter estimates. We performed a simulation study with environmental data of a real landscape and artificial species occupancy data. We investigated the effect of three factors on relative model performance: (1) the number of parameters (16, 10, 6, 2) in the 'true' model that determined the distribution of the artificial species, (2) the prevalence, i.e. the proportion of sites occupied by the species, and (3) the sample size (measured in events per variable, EPV). Regularization improved model discrimination and calibration. However, no regularization method performed best under all circumstances: the ridge generally performed best in the 16-parameter scenario. The lasso generally performed best in the 10-parameter scenario. Variable selection with AIC was best at large sample sizes (EPV >= 10) when less than half of the variables influenced the species distribution. However, at low sample sizes (EPV < 10), ridge and lasso always performed best, regardless of the parameter scenario or prevalence. Overall, calibration was best in ridge models. Other methods showed overconfidence, particularly at low sample sizes. The percentage of correctly identified models was low for both lasso and variable selection. Variable selection should be used with caution. Although it can produce the best performing models under certain conditions, these situations are difficult to infer from the data. Ridge and lasso are risk-averse model strategies that can be expected to perform well under a wide range of underlying species-habitat relationships, particularly at small sample sizes. Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/03043800 U6 - https://doi.org/10.1016/j.ecolmodel.2005.10.003 SN - 0304-3800 ER -