TY - JOUR A1 - Scheffler, Franziska A1 - Oberhänsli, Roland A1 - Pourteau, Amaury A1 - Immenhauser, A. A1 - Candan, O. T1 - Sedimentologic to metamorphic processes recorded in the high-pressure/low-temperature Mesozoic Rosetta Marble of Anatolia JF - International journal of earth sciences N2 - Anatolia’s high-pressure metamorphic belts are characterized in part by a Neotethyan stratigraphic succession that includes a mid-Cretaceous hemi-pelagic marble sequence. This unit contains, towards its stratigraphic top, dm-to-m-long radiating calcitic rods forming rosette-like textures. Here, we refer to these features as “Rosetta Marble”. The remarkable textural similarity of non-metamorphic selenite crystals and radiating calcite rods in the Rosetta Marble strongly suggests that these textures represent pseudomorphs after selenites. Metamorphosed hemi-pelagic limestones, dominated by Rosetta selenite pseudomorphs, are alternating with siliceous meta-sediments containing relictic radiolaria tests. This stratigraphic pattern is indicative of transient phases characterized by evaporites precipitated from basinal brines alternating with non-evaporative hemi-pelagic deposition from normal-marine seawater. The regional distribution of Rosetta Marble exposures over 600 km is indicative of basin-scale evaporitic intervals. High-pressure, low-temperature metamorphism of these rocks is witnessed by Sr-rich (up to 3500 ppm), fibrous calcite pseudomorphs after aragonite and isolated aragonite inclusions in quartz. Peak metamorphic conditions of 1.2 GPa and 300–350 °C are attested by high-Si white mica thermobarometry. The Rosetta Marble case example examines the potential to unravel the complete history from deposition to diagenesis and metamorphism of meta-sedimentary rocks. KW - Gypsum KW - High-pressure metamorphism KW - Neotethys KW - Anatolia Y1 - 2016 U6 - https://doi.org/10.1007/s00531-015-1214-y SN - 1437-3254 SN - 1437-3262 VL - 105 SP - 225 EP - 246 PB - Springer CY - New York ER - TY - JOUR A1 - Rimmele, Gaetan A1 - Parra, T. A1 - Goffe, B. A1 - Oberhänsli, Roland A1 - Jolivet, L. A1 - Candan, O. T1 - Exhumation paths of high-pressure-low-temperature metamorphic rocks from the Lycian Nappes and the Menderes Massif (SW Turkey) : a multi-equilibrium approach N2 - The Menderes Massif and the overlying Lycian Nappes occupy an extensive area of SW Turkey where high-pressure- low-temperature metamorphic rocks occur. Precise retrograde P-T paths reflecting the tectonic mechanisms responsible for the exhumation of these high-pressure-low-temperature rocks can be constrained with multi-equilibrium P-T estimates relying on local equilibria. Whereas a simple isothermal decompression is documented for the exhumation of high-pressure parageneses from the southern Menderes Massif, various P-T paths are observed in the overlying Karaova Formation of the Lycian Nappes. In the uppermost levels of this unit, far from the contact with the Menderes Massif, all P-T estimates depict cooling decompression paths. These high-pressure cooling paths are associated with top-to-the-NNE movements related to the Akcakaya shear zone, located at the top of the Karaova Formation. This zone of strain localization is a local intra-nappe contact that was active in the early stages of exhumation of the high-pressure rocks. In contrast, at the base of the Karaova Formation, along the contact with the Menderes Massif, P-T calculations show decompressional heating exhumation paths. These paths are associated with severe deformation characterized by top-to-the-east shearing related to a major shear zone (the Gerit shear zone) that reflects late exhumation of high-pressure parageneses under warmer conditions Y1 - 2005 SN - 0022-3530 ER - TY - JOUR A1 - Oberhänsli, Roland A1 - Partzsch, Julius A1 - Candan, O. A1 - Cetinkaplan, Mete T1 - First occurrence of Fe-Mg-carpholite documenting a high pressure metamorphism in the metasediments of the Lycian nappes, SW Turkey Y1 - 2000 ER - TY - JOUR A1 - Oberhänsli, Roland A1 - Candan, O. A1 - Dora, O. A1 - Dürr, S. T1 - Eclogites within the Menderes Massif / western Turkey Y1 - 1997 ER - TY - JOUR A1 - Jolivet, L. A1 - Rimmele, Gaetan A1 - Oberhänsli, Roland A1 - Goffe, B. A1 - Candan, O. T1 - Correlation of syn-orogenic tectonic and metamorphic events in the Cyclades, the Lycian nappes and the Menderes massif : Geodynamic implications N2 - The recent discovery of HP-LT parageneses in the basal unit of the Lycian nappes and in the Mesozoic cover of the Menderes massif leads us to reconsider and discuss the correlation of this region with the nearby collapsed Hellenides in the Aegean domain. Although similarities have long been pointed Out by various authors, a clear correlation has not yet been proposed and most authors insist more on differences than similarities. The Menderes massif is the eastern extension of the Aegean region but it has been less severely affected by the Aegean extension during the Oligo-Miocene. It would thus be useful to use the structure of the Menderes massif as an image of the Aegean region before a significant extension has considerably reduced its crustal thickness. But the lack of correlation between the two regions has so far hampered Such comparisons. We describe the main tectonic units and metamorphic events in the two regions and propose a correlation. We then show possible sections of the two regions before the Aegean extension and discuss the involvement of continental basement in the Hellenic accretionary complex. In our interpretation the Hellenic- Tauric accretionary complex was composed of stacked basement and cover units which underwent variable P-T histories. Those which were not exhumed early enough later followed a high-T evolution which led to partial melting in the Cyclades during post-orogenic extension. Although the Menderes massif contains a larger volume of basement units it does not show significant evidence for the Oligo-Miocene migmatites observed in the center of the Cyclades suggesting that crustal partial melting is strictly related to post-orogenic extension in this case Y1 - 2004 SN - 0037-9409 ER - TY - JOUR A1 - Candan, O. A1 - Koralay, O. E. A1 - Topuz, G. A1 - Oberhänsli, Roland A1 - Fritz, H. A1 - Collins, A. S. A1 - Chen, F. T1 - Late Neoproterozoic gabbro emplacement followed by early Cambrian eclogite-facies metamorphism in the Menderes Massif (W. Turkey): Implications on the final assembly of Gondwana JF - Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research N2 - Numerous (meta-)gabbroic dikes or stocks occur within the latest Neoproterozoic-early Cambrian series of the Menderes Massif (Anatolide-Tauride Block, western Turkey). These well-preserved rocks were locally converted into eclogitic metagabbros and garnet amphibolites along the contacts or shear zones. Both bulk-rock composition and compositions of igneous clinopyroxenes suggest continental tholeiitic affinity. U-Pb dating of igneous zircons from gabbroic rocks yielded a mean age of 563 +/- 1 Ma (2 sigma), indicating emplacement during the latest Neoproterozoic (Ediacaran). On the other hand, rims of zircons from eclogitic metagabbro gave 535 +/- 3 Ma (2 sigma) (early Cambrian), in addition to 558 +/- 3 Ma (2 sigma) obtained from the igneous core of zircons. These ages are interpreted as the time of high-P metamorphism and crystallization age of gabbroic protolith, respectively. Given the estimated paleogeographic position of the Anatolide-Tauride Block during the late Neoproterozoic and early Cambrian, this orogenic event can be spatially and temporally related to the northward continuity of 600-500 Ma orogenic event (Malagasy/Kuunga orogeny) extending from western margin of India, Madagascar, via Arabia up to northern margin of Gondwana beneath thick Phanerozoic cover series in Arabian Peninsula. Therefore, the high-P evolution of the basement of the Menderes Massif and associated basic intrusions can be interpreted to mark the latest stages of consumption of the basin/oceanic branches and final amalgamation of the Gondwana during the late Neoproterozoic-early Cambrian around the Arabian region. (C) 2015 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. KW - Gabbro KW - Eclogite KW - Malagasy/Kuunga orogeny KW - Menderes Massif KW - Turkey Y1 - 2016 U6 - https://doi.org/10.1016/j.gr.2015.02.015 SN - 1342-937X SN - 1878-0571 VL - 34 SP - 158 EP - 173 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Candan, O. A1 - Dora, O. A1 - Oberhänsli, Roland A1 - Ölsner, F. A1 - Dürr, S. T1 - Blueschist relics in the Mesozoic cover series of the Menderes Massif and correlations with Samos Island, Cyclades Y1 - 1997 ER - TY - JOUR A1 - Candan, O. A1 - Dora, O. A1 - Oberhänsli, Roland A1 - Cetinkaplan, Mete A1 - Partzsch, Julius A1 - Warkus, Friederike C. A1 - Dürr, S. T1 - Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes massif, Western Anatolia, Turkey Y1 - 2000 ER - TY - JOUR A1 - Candan, O. A1 - Cetinkaplan, Mete A1 - Oberhänsli, Roland A1 - Rimmele, Gaetan A1 - Akal, Cemal B. T1 - Alpine high-P/low-T metamorphism of the Afyon Zone and implications for the metamorphic evolution of Western Anatolia, Turkey N2 - Carpholite+chloritoid+pyrophyllite association occurs widely in the Triassic metaclastic rocks of the Afyon Zone in west-central Turkey. Fe-Mg-carpholite is associated with rare aragonite pseudomorphs and glaucophane in marbles and metabasites, respectively. The Afyon Zone consists stratigraphically of a Pan-African basement and an overlying Mesozoic cover sequence. The Pan-African basement, which shows Barrovian-type amphibolite-facies metamorphism, comprises garnet-mica schists, intruded by sodic amphibole-bearing metagabbros and leucocratic metagranites. It is unconformably overlain by a continuous metasedimentary sequence extending from Triassic to early Palaeocene. This cover sequence begins with metaconglomerates, which pass upwards into phyllites. Fe-Mg-carpholite occurs within this metaclastic sequence as rosette-like crystals in metapelites and fibres in quartz segregations. The metaclastic rocks are succeeded by metamorphosed platform carbonates, grading into Latest Mesozoic metamorphosed pelagic limestones, which in turn progress up to a Late Mesozoic-Early Tertiary olistostrome. This sequence is tectonically overlain by the blueschists of the Tavsanh Zone. Fe-Mg-carpholite-bearing assemblages imply temperatures of about 350 degrees C and minimum pressures of 6-9 kbar, corresponding to burial depths of about 30 km for the Mesozoic passive continental margin sediments and the underlying Pan-African supracrustal metasediments and metaintrusives. The metamorphic rocks of the Afyon Zone are unconformably overlain by Upper Palaeocene-Lower Eocene sedimentary rocks, indicating a Paleocene age for the regional HP/LT metamorphism. This implies continuous younging of HP/LT metamorphism in the Anatolides related to northward subduction of the Anatolide-Tauride platform beneath the Sakarya Zone. From north to south this involved the Tavsanh Zone (Campanian, 80 +/- 5 Ma), the Afyon Zone (Palaeocene?), the Menderes Massif (Middle Eocene) and the Lycian Nappes (Late Cretaceous-Eocene?), all of which were probably derived from the frontal part of the Anatolide-Tauride platform. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0024-4937 ER - TY - JOUR A1 - Candan, O. A1 - Akal, C. A1 - Koralay, O. E. A1 - Okay, A. I. A1 - Oberhänsli, Roland A1 - Prelevic, D. A1 - Mertz-Kraus, R. T1 - Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkey - Evidence for southward subduction of Paleotethys JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Carboniferous metagranites with U-Pb zircon crystallization ages of 331-315 Ma crop out in the Afyon zone in the northern margin of the Anatolide-Tauride Block, which is commonly regarded as part of Gondwana during the Late Palaeozoic. They are peraluminous, calc-alkaline and are characterized by increase in Rb and Ba, decrease in Nb-Ta, and enrichment in Sr and high LILE/HFSE ratios compatible with a continental arc setting. The metagranites intrude a metasedimentary sequence of phyllite, metaquartzite and marble; both the Carboniferous metagranites and metasedimentary rocks are overlain unconformably by Lower Triassic metaconglomerates, metavolcanics and Upper Triassic to Cretaceous recrystallized limestones. The low-grade metamorphism and deformation occurred at the Cretaceous-Tertiary boundary. There is no evidence for Carboniferous deformation and metamorphism in the region. Carboniferous arc-type granites and previously described Carboniferous subduction-accretion complexes on the northern margin of the Anatolide-Tauride Block suggest southward subduction of Paleotethys under Gondwana during the Carboniferous. Considering the Variscan-related arc granites in Pelagonian and Sakarya zones on the active southern margin of Laurasia, a dual subduction of Paleotethys can be envisaged between Early Carboniferous and Late Permian. However, the southward subduction was short-lived and by the Late Permian the Gondwana margin became passive. (C) 2016 Elsevier B.V. All rights reserved. KW - Carboniferous magmatism KW - Paleotethys KW - Gondwana KW - Afyon zone KW - Anatolide-Tauride Block Y1 - 2016 U6 - https://doi.org/10.1016/j.tecto.2016.06.030 SN - 0040-1951 SN - 1879-3266 VL - 683 SP - 349 EP - 366 PB - Elsevier CY - Amsterdam ER -