TY - JOUR A1 - Katsuno, Tsuyoshi A1 - Kasuga, Hisae A1 - Kusano, Yumi A1 - Yaguchi, Yoshihiro A1 - Tomomura, Miho A1 - Cui, Jilai A1 - Yang, Ziyin A1 - Baldermann, Susanne A1 - Nakamura, Yoriyuki A1 - Ohnishi, Toshiyuki A1 - Mase, Nobuyuki A1 - Watanabe, Naoharu T1 - Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process JF - Food chemistry N2 - We produced low temperature (15 degrees C) processed green tea (LTPGT) with higher aroma contents than normal green tea (Sencha). Normal temperature processed green tea (NTPGT), involved storing at 25 degrees C, and Sencha had no storing process. Sensory evaluation showed LTPGT had higher levels of floral and sweet odorants than NTPGT and Sencha. Aroma extract dilution analysis and gas chromatography-mass spectrometry-olfactometry indicated LTPGT had 12 aroma compounds with high factor dilution values (FD). Amongst LTPGT's 12 compounds, indole, jasmine lactone, cis-jasmone, coumarin, and methyl epijasmonate contributed to floral, fruity and sweet characters. In particular, indole increased initially, peaking at 16 h, then gradually decreased; Feeding experiments suggested [N-15]indole and [N-15]oxygenated indoles (OX-indoles) were produced from [N-15]anthranilic acid. We proposed the increase in indole was due to transformation of anthranilic acid during the 16 h storage and the subsequent decline in indole level was due to its conversion to OX-indoles. KW - Odorant compounds KW - Camellia sinensis KW - Tea leaves KW - Indole KW - [N-15]Indole KW - [N-15]Anthranilic acid KW - Metabolome analysis Y1 - 2014 U6 - https://doi.org/10.1016/j.foodchem.2013.10.069 SN - 0308-8146 SN - 1873-7072 VL - 148 SP - 388 EP - 395 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Tu, Vo Anh A1 - Kaga, Atsushi A1 - Gericke, Karl-Heinz A1 - Watanabe, Naoharu A1 - Narumi, Tetsuo A1 - Toda, Mitsuo A1 - Brueckner, Bernhard A1 - Baldermann, Susanne A1 - Mase, Nobuyuki T1 - Synthesis and characterization of quantum dot nanoparticles bound to the plant volatile precursor of Hydroxy-apo-10'-carotenal JF - The journal of organic chemistry N2 - This study is focused on the synthesis and characterization of hydroxy-apo-10'-carotenal/quantum dot (QD) conjugates aiming at the in vivo visualization of beta-ionone, a carotenoid-derived volatile compound known for its important contribution to the flavor and aroma of many fruits, vegetables, and plants. The synthesis of nanoparticles bound to plant volatile precursors was achieved via coupling reaction of the QD to C-27-aldehyde which was prepared from alpha-ionone via 12 steps in 2.4% overall yield. The formation of the QD-conjugate was confirmed by measuring its fluorescence spectrum to observe the occurrence of fluorescence resonance energy transfer. Y1 - 2014 U6 - https://doi.org/10.1021/jo500605c SN - 0022-3263 VL - 79 IS - 15 SP - 6808 EP - 6815 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yamamoto, Masayoshi A1 - Baldermann, Susanne A1 - Yoshikawa, Keisuke A1 - Fujita, Akira A1 - Mase, Nobuyuki A1 - Watanabe, Naoharu T1 - Determination of volatile compounds in four commercial samples of japanese green algae using solid phase microextraction gas chromatography mass spectrometry JF - The ScientificWorld journal N2 - Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings. Y1 - 2014 U6 - https://doi.org/10.1155/2014/289780 SN - 1537-744X PB - Hindawi Publishing Corp. CY - New York ER -