TY - JOUR A1 - Harlov, Daniel E. A1 - Prochazka, V. A1 - Förster, Hans-Jürgen T1 - Monazite-zircon-fluorapatite associations in the Melechov granite massif, Czech Republic Y1 - 2005 SN - 0016-7037 ER - TY - JOUR A1 - Harlov, Daniel E. A1 - Wirth, R. A1 - Förster, Hans-Jürgen T1 - An experimental study of dissolution-reprecipitation in fluorapatite : fluid infiltration and the formation of monazite N2 - In a series of timed experiments, monazite inclusions are induced to form in the Durango fluorapatite using 1 and 2 N HCl and H2SO4 solutions at temperatures of 300, 600, and 900 degrees C and pressures of 500 and 1,000 MPa. The monazite inclusions form only in reacted areas, i.e. depleted in (Y+REE)+Si+Na+S+Cl. In the HCl experiments, the reaction front between the reacted and unreacted regions is sharp, whereas in the H2SO4 experiments it ranges from sharp to diffuse. In the 1 N HCl experiments, Ostwald ripening of the monazite inclusions took place both as a function of increased reaction time as well as increased temperature and pressure. Monazite growth was more sluggish in the H2SO4 experiments. Transmission electron microscopic (TEM) investigation of foils cut across the reaction boundary in a fluorapatite from the 1 N HCl experiment (600 degrees C and 500 MPa) indicate that the reacted region along the reaction front is characterized by numerous, sub-parallel, 10-20 nm diameter nano-channels. TEM investigation of foils cut from a reacted region in a fluorapatite from the 1 N H2SO4 experiment at 900 degrees C and 1,000 MPa indicates a pervasive nano- porosity, with the monazite inclusions being in direct contact with the surrounding fluorapatite. For either set of experiments, reacted areas in the fluorapatite are interpreted as replacement reactions, which proceed via a moving interface or reaction front associated with what is essentially a simultaneous dissolution-reprecipitation process. The formation of a micro- and nano-porosity in the metasomatised regions of the fluorapatite allows fluids to permeate the reacted areas. This permits rapid mass transfer in the form of fluid-aided diffusion of cations to and from the growing monazite inclusions. Nano-channels and nano-pores also serve as sites for nucleation and the subsequent growth of the monazite inclusions Y1 - 2005 SN - 0010-7999 ER - TY - JOUR A1 - Ziemann, Martin Andreas A1 - Förster, Hans-Jürgen A1 - Harlov, Daniel E. A1 - Frei, Dirk T1 - Origin of fluorapatite-monazite assemblages in a metamorphosed, sillimanite-bearing pegmatoid, Reinbolt Hills, East Antarctica N2 - Thermobarometrical and mineral-chemical investigations by electron microprobe and LA-ICP-MS on a sillimanite- bearing pegmatoid from the Reinbolt Hills provide important constraints on the P-T-X-age relations of part of East Antarctica during Pan-African tectonism. U-Th-total Pb ages of monazite imply that the pegmatoid of originally Grenvillan age (zircon U-Pb age of ca. 900 Ma) underwent a major, late Pan-African (Cambrian) regional, granulite-facies metamorphism between 500 and 550 Ma. Most of the monazite formed during this event, as result of apatite metasomatism owing to infiltration of high-grade metamorphic fluids. Apatite-biotite and other mineral thermobarometers define the peak metamorphic temperatures and pressures with 850-950 degrees C and 0.8-1.0 GPa. The F-Cl-OH relations in apatite, and biotite, the chemistry of fluid inclusions and the presence of K-feldspar microveins suggest that the metasomatising fluid was a CO2-bearing, diluted KCl brine. The pegmatoid is the first record of monazite-(Ce) formed from fluorapatite that is rich in U (up to 2.6 Wt% UO2) and possesses Th/U ratios <1 (0.09 on average). These chemical signatures are direct reflection of the U and Th concentration patterns in the parental fluorapatite Y1 - 2005 SN - 0935-1221 ER -