TY - JOUR A1 - Bookhagen, Bodo A1 - Thiede, Rasmus Christoph A1 - Strecker, Manfred T1 - Abnormal monsoon years and their control on erosion and sediment flux in the high, and northwest Himalaya N2 - The interplay between topography and Indian summer monsoon circulation profoundly controls precipitation distribution, sediment transport, and river discharge along the Southern Himalayan Mountain Front (SHF). The Higher Himalayas form a major orographic barrier that separates humid sectors to the south and and regions to the north. During the Indian summer monsoon, vortices transport moisture from the Bay of Bengal, swirl along the SHF to the northwest, and cause heavy rainfall when colliding with the mountain front. In the eastern and central parts of the Himalaya, precipitation measurements derived from passive microwave analysis (SSM/I) show a strong gradient, with high values at medium elevations and extensive penetration of moisture along major river valleys into the orogen. The end of the monsoonal conveyer belt is near the Sutlej Valley in the NW Himalaya, where precipitation is lower and rainfall maxima move to lower elevations. This region thus comprises a climatic transition zone that is very sensitive to changes in Indian summer monsoon strength. To constrain magnitude, temporal, and spatial distribution of precipitation, we analyzed high-resolution passive microwave data from the last decade and identified an abnormal monsoon year (AMY) in 2002. During the 2002 AMY, violent rainstorms conquered orographic barriers and penetrated far into otherwise and regions in the northwest Himalaya at elevations in excess of 3 km asl. While precipitation in these regions was significantly increased and triggered extensive erosional processes (i.e., debris flows) on sparsely vegetated, steep hillslopes, mean rainfall along the low to medium elevations was not significantly greater in magnitude. This shift may thus play an important role in the overall sediment flux toward the Himalayan foreland. Using extended precipitation and sediment flux records for the last century, we show that these events have a decadal recurrence interval during the present-day monsoon circulation. Hence, episodically occurring AMYs control geomorphic processes primarily in the high-elevation and sectors of the orogen, while annual recurring monsoonal rainfall distribution dominates erosion in the low- to medium- elevation parts along the SHF. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Bookhagen, Bodo A1 - Thiede, Rasmus Christoph A1 - Strecker, Manfred T1 - Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya N2 - The intensity of the Asian summer-monsoon circulation varies over decadal to millennial time scales and is reflected in changes in surface processes, terrestrial environments, and marine sediment records. However, the mechanisms of long-lived (2-5 k.y.) intensified monsoon phases, the related changes in precipitation distribution, and their effect on landscape evolution and sedimentation rates are not yet well understood. The and high-elevation sectors of the orogen correspond to a climatically sensitive zone that currently receives rain only during abnormal (i.e., strengthened) monsoon seasons. Analogous to present-day rainfall anomalies, enhanced precipitation during an intensified monsoon phase is expected to have penetrated far into these geomorphic threshold regions where hillslopes are close to the angle of failure. We associate landslide triggering during intensified monsoon phases with enhanced precipitation, discharge, and sediment flux leading to an increase in pore-water pressure, lateral scouring of rivers, and over- steepening of hillslopes, eventually resulting in failure of slopes and exceptionally large mass movements. Here we use lacustrine deposits related to spatially and temporally clustered large landslides (>0.5 km(3)) in the Sutlej Valley region of the northwest Himalaya to calculate sedimentation rates and to infer rainfall patterns during late Pleistocene (29-24 ka) and Holocene (10-4 ka) intensified monsoon phases. Compared to present-day sediment-flux measurements, a fivefold increase in sediment-transport rates recorded by sediments in landslide-dammed lakes characterized these episodes of high climatic variability. These changes thus emphasize the pronounced imprint of millennial-scale climate change on surface processes and landscape evolution Y1 - 2005 SN - 0091-7613 ER - TY - JOUR A1 - Thiede, Rasmus Christoph A1 - Arrowsmith, J. Ramón A1 - Bookhagen, Bodo A1 - McWilliams, Michael O. A1 - Sobel, Edward A1 - Strecker, Manfred T1 - From tectonically to erosionally controlled development of the Himalayan orogen N2 - Whether variations in the spatial distribution of erosion influence the location, style, and magnitude of deformation within the Himalayan orogen is a matter of debate. We report new Ar-40/Ar-39 white mica and apatite fission- track (AFT) ages that measure the vertical component of exhumation rates along an similar to 120-km-wide NE-SW transect spanning the greater Sutlej region of northwest India. The Ar-40/Ar-39 data indicate that first the High Himalayan Crystalline units cooled below their closing temperature during the early to middle Miocene. Subsequently, Lesser Himalayan Crystalline nappes cooled rapidly, indicating southward propagation of the orogen during late Miocene to Pliocene time. The AFT data, in contrast, imply synchronous exhumation of a NE-SW-oriented similar to 80 x 40 km region spanning both crystalline nappes during the Pliocene-Quaternary. The locus of pronounced exhumation defined by the AFT data correlates with a region of high precipitation, discharge, and sediment flux rates during the Holocene. This correlation suggests that although tectonic processes exerted the dominant control on the denudation pattern before and until the middle Miocene; erosion may have been the most important factor since the Pliocene Y1 - 2005 SN - 0091-7613 ER -