TY - JOUR A1 - Albrecht, Steve A1 - Janietz, Silvia A1 - Schindler, Wolfram A1 - Frisch, Johannes A1 - Kurpiers, Jona A1 - Kniepert, Juliane A1 - Inal, Sahika A1 - Pingel, Patrick A1 - Fostiropoulos, Konstantinos A1 - Koch, Norbert A1 - Neher, Dieter T1 - Fluorinated Copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells JF - Journal of the American Chemical Society N2 - A novel fluorinated copolymer (F-PCPDTBT) is introduced and shown to exhibit significantly higher power conversion efficiency in bulk heterojunction solar cells with PC70BM compared to the well-known low-band-gap polymer PCPDTBT. Fluorination lowers the polymer HOMO level, resulting in high open-circuit voltages well exceeding 0.7 V. Optical spectroscopy and morphological studies with energy-resolved transmission electron microscopy reveal that the fluorinated polymer aggregates more strongly in pristine and blended layers, with a smaller amount of additives needed to achieve optimum device performance. Time-delayed collection field and charge extraction by linearly increasing voltage are used to gain insight into the effect of fluorination on the field dependence of free charge-carrier generation and recombination. F-PCPDTBT is shown to exhibit a significantly weaker field dependence of free charge-carrier generation combined with an overall larger amount of free charges, meaning that geminate recombination is greatly reduced. Additionally, a 3-fold reduction in non-geminate recombination is measured compared to optimized PCPDTBT blends. As a consequence of reduced non-geminate recombination, the performance of optimized blends of fluorinated PCPDTBT with PC70BM is largely determined by the field dependence of free-carrier generation, and this field dependence is considerably weaker compared to that of blends comprising the non-fluorinated polymer. For these optimized blends, a short-circuit current of 14 mA/cm(2), an open-circuit voltage of 0.74 V, and a fill factor of 58% are achieved, giving a highest energy conversion efficiency of 6.16%. The superior device performance and the low band-gap render this new polymer highly promising for the construction of efficient polymer-based tandem solar cells. Y1 - 2012 U6 - https://doi.org/10.1021/ja305039j SN - 0002-7863 VL - 134 IS - 36 SP - 14932 EP - 14944 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Caprioglio, Pietro A1 - Zu, Fengshuo A1 - Wolff, Christian Michael A1 - Prieto, Jose A. Marquez A1 - Stolterfoht, Martin A1 - Becker, Pascal A1 - Koch, Norbert A1 - Unold, Thomas A1 - Rech, Bernd A1 - Albrecht, Steve A1 - Neher, Dieter T1 - High open circuit voltages in pin-type perovskite solar cells through strontium addition JF - Sustainable Energy & Fuels N2 - The incorporation of even small amounts of strontium (Sr) into lead-base hybrid quadruple cation perovskite solar cells results in a systematic increase of the open circuit voltage (V-oc) in pin-type perovskite solar cells. We demonstrate via absolute and transient photoluminescence (PL) experiments how the incorporation of Sr significantly reduces the non-radiative recombination losses in the neat perovskite layer. We show that Sr segregates at the perovskite surface, where it induces important changes of morphology and energetics. Notably, the Sr-enriched surface exhibits a wider band gap and a more n-type character, accompanied with significantly stronger surface band bending. As a result, we observe a significant increase of the quasi-Fermi level splitting in the neat perovskite by reduced surface recombination and more importantly, a strong reduction of losses attributed to non-radiative recombination at the interface to the C-60 electron-transporting layer. The resulting solar cells exhibited a V-oc of 1.18 V, which could be further improved to nearly 1.23 V through addition of a thin polymer interlayer, reducing the non-radiative voltage loss to only 110 meV. Our work shows that simply adding a small amount of Sr to the precursor solutions induces a beneficial surface modification in the perovskite, without requiring any post treatment, resulting in high efficiency solar cells with power conversion efficiency (PCE) up to 20.3%. Our results demonstrate very high V-oc values and efficiencies in Sr-containing quadruple cation perovskite pin-type solar cells and highlight the imperative importance of addressing and minimizing the recombination losses at the interface between perovskite and charge transporting layer. Y1 - 2019 U6 - https://doi.org/10.1039/c8se00509e SN - 2398-4902 VL - 3 IS - 2 SP - 550 EP - 563 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Castellani, Mauro A1 - Salzmann, Ingo A1 - Bugnon, Philippe A1 - Yu, Shuwen A1 - Oehzelt, Martin A1 - Koch, Norbert T1 - Structural and electronic implications for carrier injection into organic semiconductors N2 - We report on the structural and electronic interface formation between ITO (indium-tin-oxide) and prototypical organic small molecular semiconductors, i.e., CuPc (copper phthalocyanine) and alpha-NPD (N,N'-di(naphtalen-1-yl)- N,N'-diphenyl-benzidine). In particular, the effects of in situ oxygen plasma pretreatment of the ITO surface on interface properties are examined in detail: Organic layer-thickness dependent Kelvin probe measurements revealed a good alignment of the ITO work function and the highest occupied electronic level of the organic material in all samples. In contrast, the electrical properties of hole-only and bipolar organic diodes depend strongly on the treatment of ITO prior to organic deposition. This dependence is more pronounced for diodes made of polycrystalline CuPc than for those of amorphous alpha-NPD layers. X-ray diffraction and atomic force microscopic (AFM) investigations of CuPc nucleation and growth evidenced a more pronounced texture of the polycrystalline film structure on the ITO substrate that was oxygen plasma treated prior to organic layer deposition. These findings suggest that the anisotropic electrical properties of CuPc crystallites, and their orientation with respect to the substrate, strongly affect the charge carrier injection and transport properties at the anode interface. Y1 - 2009 UR - http://www.springerlink.com/content/100501 U6 - https://doi.org/10.1007/s00339-009-5336-6 SN - 0947-8396 ER - TY - JOUR A1 - Frisch, Johannes A1 - Schubert, Marcel A1 - Preis, Eduard A1 - Rabe, Jürgen P. A1 - Neher, Dieter A1 - Scherf, Ullrich A1 - Koch, Norbert T1 - Full electronic structure across a polymer heterojunction solar cell JF - Journal of materials chemistry N2 - We correlate the morphology and energy level alignment of bilayer structures comprising the donor poly(3-hexylthiophene) (P3HT) and the acceptor polyfluorene copolymer poly(9,90dialklylfluorene-alt-4,7-bis(2,5-thiendiyl)-2,1,3-benzothiadiazole) (PFTBTT) with the performance of these bilayers in organic photovoltaic cells (OPVCs). The conducting polymer poly(ethylenedioxythiophene): poly (styrenesulfonate) (PEDT:PSS) was used as the bottom electrode and Ca as the top electrode. Ultraviolet photoelectron spectroscopy (UPS) revealed that notable interface dipoles occur at all interfaces across the OPVC structure, highlighting that vacuum level alignment cannot reliably be used to estimate the electronic properties for device design. Particularly the effective electrode work function values (after contact formation with the conjugated polymers) differ significantly from those of the pristine electrode materials. Chemical reactions between PEDT: PSS and P3HT on the one hand and Ca and PFTBTT on the other hand are identified as cause for the measured interface dipoles. The vacuum level shift between P3HT and PFTBTT is related to mutual energy level pinning at gap states. Annealing induced morphological changes at the P3HT/PFTBTT interface increased the efficiency of OPVCs, while the electronic structure was not affected by thermal treatment. Y1 - 2012 U6 - https://doi.org/10.1039/c1jm14968g SN - 0959-9428 VL - 22 IS - 10 SP - 4418 EP - 4424 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Ghani, Fatemeh A1 - Opitz, Andreas A1 - Pingel, Patrick A1 - Heimel, Georg A1 - Salzmann, Ingo A1 - Frisch, Johannes A1 - Neher, Dieter A1 - Tsami, Argiri A1 - Scherf, Ullrich A1 - Koch, Norbert T1 - Charge Transfer in and Conductivity of Molecularly Doped Thiophene-Based Copolymers JF - Journal of polymer science : B, Polymer physics N2 - The electrical conductivity of organic semiconductors can be enhanced by orders of magnitude via doping with strong molecular electron acceptors or donors. Ground-state integer charge transfer and charge-transfer complex formation between organic semiconductors and molecular dopants have been suggested as the microscopic mechanisms causing these profound changes in electrical materials properties. Here, we study charge-transfer interactions between the common molecular p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane and a systematic series of thiophene-based copolymers by a combination of spectroscopic techniques and electrical measurements. Subtle variations in chemical structure are seen to significantly impact the nature of the charge-transfer species and the efficiency of the doping process, underlining the need for a more detailed understanding of the microscopic doping mechanism in organic semiconductors to reliably guide targeted chemical design. KW - charge transfer KW - conducting polymers KW - doping KW - thiophene Y1 - 2015 U6 - https://doi.org/10.1002/polb.23631 SN - 0887-6266 SN - 1099-0488 VL - 53 IS - 1 SP - 58 EP - 63 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Zhang, Jiahuan A1 - Pena-Camargo, Francisco A1 - Sveinbjornsson, Kari A1 - Zu, Fengshuo A1 - Menzel, Dorothee A1 - Warby, Jonathan A1 - Li, Jinzhao A1 - Koch, Norbert A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Albrecht, Steve T1 - Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells JF - Solar RRL N2 - Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3% with a MeO-2PACz hole-transporting layer and 20.8% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved. KW - CsPbI2Br KW - efficiency potentials KW - inorganic perovskites KW - photoluminescence KW - solar cells KW - voltage losses Y1 - 2022 U6 - https://doi.org/10.1002/solr.202200690 SN - 2367-198X VL - 6 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hörmann, Ulrich A1 - Zeiske, Stefan A1 - Park, Soohyung A1 - Schultz, Thorsten A1 - Kickhoefel, Sebastian A1 - Scherf, Ullrich A1 - Blumstengel, Sylke A1 - Koch, Norbert A1 - Neher, Dieter T1 - Direct observation of state-filling at hybrid tin oxide/organic interfaces JF - Applied physics letters N2 - Electroluminescence (EL) spectra of hybrid charge transfer states at metal oxide/organic type-II heterojunctions exhibit bias-induced spectral shifts. The reasons for this phenomenon have been discussed controversially and arguments for either electric field-induced effects or the filling of trap states at the oxide surface have been put forward. Here, we combine the results of EL and photovoltaic measurements to eliminate the unavoidable effect of the series resistance of inorganic and organic components on the total voltage drop across the hybrid device. For SnOx combined with the conjugated polymer [ladder type poly-(para-phenylene)], we find a one-to-one correspondence between the blue-shift of the EL peak and the increase of the quasi-Fermi level splitting at the hybrid heterojunction, which we unambiguously assign to state filling. Our data are resembled best by a model considering the combination of an exponential density of states with a doped semiconductor. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5082704 SN - 0003-6951 SN - 1077-3118 VL - 114 IS - 18 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Hörmann, Ulrich A1 - Zeiske, Stefan A1 - Piersimoni, Fortunato A1 - Hoffmann, Lukas A1 - Schlesinger, Raphael A1 - Koch, Norbert A1 - Riedl, Thomas A1 - Andrienko, Denis A1 - Neher, Dieter T1 - Stark effect of hybrid charge transfer states at planar ZnO/organic interfaces JF - Physical review : B, Condensed matter and materials physics N2 - We investigate the bias dependence of the hybrid charge transfer state emission at planar heterojunctions between the metal oxide acceptor ZnO and three donor molecules. The electroluminescence peak energy linearly increases with the applied bias, saturating at high fields. Variation of the organic layer thickness and deliberate change of the ZnO conductivity through controlled photodoping allow us to confirm that this bias-induced spectral shift relates to the internal electric field in the organic layer rather than the filling of states at the hybrid interface. We show that existing continuum models overestimate the hole delocalization and propose a simple electrostatic model in which the linear and quadratic Stark effects are explained by the electrostatic interaction of a strongly polarizable molecular cation with its mirror image. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevB.98.155312 SN - 2469-9950 SN - 2469-9969 VL - 98 IS - 15 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Lange, Ilja A1 - Blakesley, James C. A1 - Frisch, Johannes A1 - Vollmer, Antje A1 - Koch, Norbert A1 - Neher, Dieter T1 - Band bending in conjugated polymer layers JF - Physical review letters N2 - We use the Kelvin probe method to study the energy-level alignment of four conjugated polymers deposited on various electrodes. Band bending is observed in all polymers when the substrate work function exceeds critical values. Through modeling, we show that the band bending is explained by charge transfer from the electrodes into a small density of states that extends several hundred meV into the band gap. The energetic spread of these states is correlated with charge-carrier mobilities, suggesting that the same states also govern charge transport in the bulk of these polymers. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevLett.106.216402 SN - 0031-9007 VL - 106 IS - 21 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Lu, Guanghao A1 - Blakesley, James C. A1 - Himmelberger, Scott A1 - Pingel, Patrick A1 - Frisch, Johannes A1 - Lieberwirth, Ingo A1 - Salzmann, Ingo A1 - Oehzelt, Martin A1 - Di Pietro, Riccardo A1 - Salleo, Alberto A1 - Koch, Norbert A1 - Neher, Dieter T1 - Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors JF - Nature Communications N2 - Polymer transistors are being intensively developed for next-generation flexible electronics. Blends comprising a small amount of semiconducting polymer mixed into an insulating polymer matrix have simultaneously shown superior performance and environmental stability in organic field-effect transistors compared with the neat semiconductor. Here we show that such blends actually perform very poorly in the undoped state, and that mobility and on/off ratio are improved dramatically upon moderate doping. Structural investigations show that these blend layers feature nanometre-scale semiconductor domains and a vertical composition gradient. This particular morphology enables a quasi three-dimensional spatial distribution of semiconductor pathways within the insulating matrix, in which charge accumulation and depletion via a gate bias is substantially different from neat semiconductor, and where high on-current and low off-current are simultaneously realized in the stable doped state. Adding only 5 wt% of a semiconducting polymer to a polystyrene matrix, we realized an environmentally stable inverter with gain up to 60. Y1 - 2013 U6 - https://doi.org/10.1038/ncomms2587 SN - 2041-1723 VL - 4 IS - 1-2 PB - Nature Publ. Group CY - London ER -