TY - JOUR A1 - Brinkmann, Kai Oliver A1 - Becker, Tim A1 - Zimmermann, Florian A1 - Kreusel, Cedric A1 - Gahlmann, Tobias A1 - Theisen, Manuel A1 - Haeger, Tobias A1 - Olthof, Selina A1 - Tückmantel, Christian A1 - Günster, M. A1 - Maschwitz, Timo A1 - Göbelsmann, Fabian A1 - Koch, Christine A1 - Hertel, Dirk A1 - Caprioglio, Pietro A1 - Peña-Camargo, Francisco A1 - Perdigón-Toro, Lorena A1 - Al-Ashouri, Amran A1 - Merten, Lena A1 - Hinderhofer, Alexander A1 - Gomell, Leonie A1 - Zhang, Siyuan A1 - Schreiber, Frank A1 - Albrecht, Steve A1 - Meerholz, Klaus A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Riedl, Thomas T1 - Perovskite-organic tandem solar cells with indium oxide interconnect JF - Nature N2 - Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures(1). Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported(2-5). Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells(6,7). Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (V-oc) of wide-gap perovskite cells(8) and losses introduced by the interconnect between the subcells(9,10). Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high V-oc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high V-oc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells(11), show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions(12) and are on a par with perovskite-CIGS and all-perovskite multijunctions(13). Y1 - 2022 U6 - https://doi.org/10.1038/s41586-022-04455-0 SN - 0028-0836 SN - 1476-4687 VL - 604 IS - 7905 SP - 280 EP - 286 PB - Nature Research CY - Berlin ER - TY - THES A1 - Caprioglio, Pietro T1 - Non-radiative recombination losses in perovskite solar cells BT - from fundamental understanding to high efficiency devices BT - vom grundlegenden Verständnis zu hocheffizienten Bauteilen N2 - In the last decade the photovoltaic research has been preponderantly overturned by the arrival of metal halide perovskites. The introduction of this class of materials in the academic research for renewable energy literally shifted the focus of a large number of research groups and institutions. The attractiveness of halide perovskites lays particularly on their skyrocketing efficiencies and relatively simple and cheap fabrication methods. Specifically, the latter allowed for a quick development of this research in many universities and institutes around the world at the same time. The outcome has been a fast and beneficial increase in knowledge with a consequent terrific improvement of this new technology. On the other side, the enormous amount of research promoted an immense outgrowth of scientific literature, perpetually published. Halide perovskite solar cells are now effectively competing with other established photovoltaic technologies in terms of power conversion efficiencies and production costs. Despite the tremendous improvement, a thorough understanding of the energy losses in these systems is of imperative importance to unlock the full thermodynamic potential of this material. This thesis focuses on the understanding of the non-radiative recombination processes in the neat perovskite and in complete devices. Specifically, photoluminescence quantum yield (PLQY) measurements were applied to multilayer stacks and cells under different illumination conditions to accurately determine the quasi-Fermi levels splitting (QFLS) in the absorber, and compare it with the external open-circuit voltage of the device (V_OC). Combined with drift-diffusion simulations, this approach allowed us to pinpoint the sites of predominant recombination, but also to investigate the dynamics of the underlying processes. As such, the internal and external ideality factors, associated to the QFLS and V_OC respectively, are studied with the aim of understanding the type of recombination processes taking place in the multilayered architecture of the device. Our findings highlight the failure of the equality between QFLS and V_OC in the case of strong interface recombination, as well as the detrimental effect of all commonly used transport layers in terms of V_OC losses. In these regards, we show how, in most perovskite solar cells, different recombination processes can affect the internal QFLS and the external V_OC and that interface recombination dictates the V_OC losses. This line of arguments allowed to rationalize that, in our devices, the external ideality factor is completely dominated by interface recombination, and that this process can alone be responsible for values of the ideality factor between 1 and 2, typically observed in perovskite solar cells. Importantly, our studies demonstrated how strong interface recombination can lower the ideality factor towards values of 1, often misinterpreted as pure radiative second order recombination. As such, a comprehensive understanding of the recombination loss mechanisms currently limiting the device performance was achieved. In order to reach the full thermodynamic potential of the perovskite absorber, the interfaces of both the electron and hole transport layers (ETL/HTL) must be properly addressed and improved. From here, the second part of the research work is devoted on reducing the interfacial non-radiative energy losses by optimizing the structure and energetics of the relevant interface in our solar cell devices, with the aim of bringing their quasi-Fermi level splitting closer to its radiative limit. As such, the interfaces have been carefully addressed and optimized with different methodologies. First, a small amount of Sr is added into the perovskite precursor solution with the effect of effectively reducing surface and interface recombination. In this case, devices with V_OC up to 1.23 V were achieved and the energy losses were minimized to as low as 100 meV from the radiative limit of the material. Through a combination of different methods, we showed that these improvements are related to a strong n-type surface doping, which repels the holes in the perovskite from the surface and the interface with the ETL. Second, a more general device improvement was achieved by depositing a defect-passivating poly(ionic-liquid) layer on top of the perovskite absorber. The resulting devices featured a concomitant improvement of the V_OC and fill factor, up to 1.17 V and 83% respectively, reaching efficiency as high as 21.4%. Moreover, the protecting polymer layer helped to enhance the stability of the devices under prolonged maximum power point tracking measurements. Lastly, PLQY measurements are used to investigate the recombination mechanisms in halide-segregated large bandgap perovskite materials. Here, our findings showed how few iodide-rich low-energy domains act as highly efficient radiative recombination centers, capable of generating PLQY values up to 25%. Coupling these results with a detailed microscopic cathodoluminescence analysis and absorption profiles allowed to demonstrate how the emission from these low energy domains is due to the trapping of the carriers photogenerated in the Br-rich high-energy domains. Thereby, the strong implications of this phenomenon are discussed in relation to the failure of the optical reciprocity between absorption and emission and on the consequent applicability of the Shockley-Queisser theory for studying the energy losses such systems. In conclusion, the identification and quantification of the non-radiative QFLS and V_OC losses provided a base knowledge of the fundamental limitation of perovskite solar cells and served as guidance for future optimization and development of this technology. Furthermore, by providing practical examples of solar cell improvements, we corroborated the correctness of our fundamental understanding and proposed new methodologies to be further explored by new generations of scientists. N2 - In den letzten zehn Jahren hat sich die Photovoltaikforschung durch das Aufkommen von metallhalogeniden Perowskiten grundlegend geändert. Die Einführung dieser Materialklasse in der Forschung für erneuerbare Energien hat eine Neuorientierung einer großen Anzahl von Forschungsgruppen eingeleitet. Die Attraktivität von metallhalogeniden Perowskiten beruht insbesondere auf ihren hohen photovoltaischen Wirkungsgraden sowie ihren einfachen und billigen Herstellungsverfahren. Letzteres ermöglichte letztendlich auch die schnelle Entwicklung der Perowskit Photovoltaik an vielen Universitäten und Instituten weltweit. Die universitäre Forschung führte außerdem zu einem verbesserten Verständnis der Limitierungen der Solarzellen was zu einer weiteren Verbesserung der Technologie betrug. Auf der anderen Seite führte die intensive Forschung zu einem immensen Wachstum der wissenschaftlichen Publikationen. Halogenid-Perowskit-Solarzellen konkurrieren heute effektiv mit anderen etablierten Photovoltaik-Technologien hinsichtlich ihres Wirkungsgrades und der Produktionskosten. Trotz der der enormen Effizienzsteigerung ist ein gründliches Verständnis der Energieverluste in diesen Systemen von entscheidender Bedeutung, um das volle thermodynamische Potenzial dieses Materials auszuschöpfen. Diese Arbeit konzentriert sich auf das Verständnis nichtstrahlender Rekombinationsprozesse in den reinen Perowskitschichten und in vollständigen Solarzellen. Insbesondere wurden Messungen der Photolumineszenzquantenausbeute (PLQY) an Mehrschichtstapel und Zellen unter verschiedenen Beleuchtungsbedingungen durchgeführt, um die Quasi-Fermi-Niveau-Aufspaltung (QFLS) in der aktiven Schicht genau zu bestimmen und sie mit der externen Leerlaufspannung (VOC) der Bauteile zu vergleichen. In Kombination mit Drift-diffusions-Simulationen konnten wir mit diesem Ansatz die Stellen der vorherrschenden Rekombination in den Bauteilen lokalisieren, aber auch die Dynamik der zugrunde liegenden Prozesse untersuchen. In weiterer Folge wurden die internen und externen Idealitätsfaktoren, die mit dem QFLS bzw. VOC verbunden sind, untersucht, um die Art der Rekombinationsprozesse zu verstehen, die in Multischicht-Solarzellen stattfinden. Unsere Ergebnisse zeigten, dass das QFLS und der VOC bei starker Grenzflächenrekombination nicht gleich sind, sowie den nachteiligen Effekt aller häufig verwendeten Transportschichten in Bezug auf VOC-Verluste. In diesem Zusammenhang zeigten wir, wie in den meisten Perowskit-Solarzellen unterschiedliche Rekombinationsprozesse das interne QFLS und das externe VOC beeinflussen können und dass die Grenzflächenrekombination die VOC-Verluste dominiert. Diese Argumentation erlaubte es uns außerdem klären, warum in den Bauteilen der externe Idealitätsfaktor vollständig von der Grenzflächenrekombination dominiert wird und dass dieser Prozess allein für Werte des Idealitätsfaktors zwischen 1 und 2 verantwortlich sein kann, die typischerweise in Perowskit-Solarzellen beobachtet werden. Insbesondere zeigten unsere Studien, wie eine starke Grenzflächenrekombination den Idealitätsfaktor auf Werte von 1 senken kann, was häufig als reine strahlende Rekombination zweiter Ordnung misinterpretiert wird. Diese Studien ermöglichten uns daher ein umfassendes Verständnis der Rekombinationsverlustmechanismen, die derzeit den Wirkungsgrad limitieren. Um das volle thermodynamische Potential der Perowskit-Absorberschicht zu erreichen, müssen die Grenzflächen der Elektron- als auch der Lochtransportschicht (ETL/HTL) richtig adressiert und verbessert werden. Ausgehend davon, befasst sich der zweite Teil der Forschungsarbeit mit der Reduzierung der nichtstrahlenden Energieverluste an der Grenzfläche durch Optimierung der Struktur und Energetik der relevanten Grenzflächen in den Solarzellen, um deren Quasi-Fermi-Niveau-Aufspaltung näher ans strahlende Limit zu bringen. Daher wurden die Grenzflächen sorgfältig untersucht und mit unterschiedlichen Methoden optimiert. Zunächst wird der Perowskit-Lösung eine kleine Menge Strontium (Sr) zugesetzt, um die Oberflächen- und Grenzflächenrekombination effektiv zu reduzieren. In diesem Fall wurden Bauteile mit Leerlaufspannungen bis zu 1.23 V erreicht und die Energieverluste auf nur 100 meV bezüglich des strahlenden Limits des Materials reduziert. Durch eine Kombination unterschiedlicher Methoden haben wir in weiterer Folge gezeigt, dass diese Verbesserungen mit einer starken Oberflächendotierung vom n-Typ zusammenhängen, die die Löcher im Perowskit von der Oberfläche und der Grenzfläche zur ETL abstößt. Außerdem wurde eine allgemeinere Verbesserung der Bauteile erreicht, indem eine defektpassivierende Poly(ionische) Flüssigkeit auf dem Perowskit-Absorber abgeschieden wurde. Die resultierenden Solarzellen zeigten eine gleichzeitige Verbesserung des VOC und des Füllfaktors von 1.17 V bzw. 83% und erreichten einen Wirkungsgrad von bis zu 21.4%. Darüber hinaus trug die schützende Polymerschicht dazu bei, die Stabilität der Bauteile bei längeren Messungen am maximalen Leistungspunkts zu verbessern. In einer weiteren Studie wurden PLQY-Messungen verwendet, um die Rekombinationsmechanismen in Halogenid-getrennten Perowskit-Materialien mit großer Bandlücke zu untersuchen. Hier zeigten unsere Ergebnisse, wie wenige jodreiche Domänen mit vergleichsweise kleiner Bandlücke als hocheffiziente Strahlungsrekombinationszentren fungieren können, die zu PLQY-Werte von bis zu 25% führen können. Durch die Kopplung dieser Ergebnisse mit einer detaillierten mikroskopischen Kathodolumineszenzanalyse und Absorptionsprofilen konnte gezeigt werden, wie die Emission aus den jodreichen Niedrigenergiedomänen auf das Einfangen von photogenerierten Ladungsträgern in den Bromid-reichen Domänen mit hoher Bandlücke zurückzuführen ist. Dabei wurden die starken Auswirkungen dieses Phänomens in Bezug auf das Versagen der optischen Reziprozität zwischen Absorption und Emission und die daraus resultierende Anwendbarkeit der Shockley-Queisser-Theorie zur Untersuchung der Energieverluste solcher Systeme diskutiert. Zusammenfassend lieferte die Identifizierung und Quantifizierung der nichtstrahlenden QFLS und VOC-Verluste ein grundlegendes Verständnis der grundlegenden Limitierungen von Perowskit-Solarzellen und dient als Leitfaden für die zukünftige Optimierung und Entwicklung dieser Technologie. Darüber hinaus haben wir anhand praktischer Beispiele konkrete Verbesserungen von Solarzellen aufgezeigt, die die Richtigkeit unserer Schlussfolgerungen bestätigten sowie neue Methoden vorgeschlagen, die von einer neuen Generationen von Wissenschaftlern weiter untersucht werden können. T2 - Nichtstrahlende Rekombinationsverluste in Perowskit-Solarzellen KW - perovskite KW - solar cells KW - Perowskit KW - Solarzellen KW - Photovoltaik Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-477630 ER - TY - JOUR A1 - Caprioglio, Pietro A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Unold, Thomas A1 - Rech, Bernd A1 - Albrecht, Steve A1 - Neher, Dieter T1 - On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells JF - advanced energy materials N2 - Today's perovskite solar cells (PSCs) are limited mainly by their open‐circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity‐dependent measurements of the quasi‐Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin‐type PSCs with efficiencies above 20%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley‐Queisser theory. This has far‐reaching implications for the applicability of some well‐established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift‐diffusion simulations, the intensity dependence of the QFLS, the QFLS‐VOC offset and the ideality factor are consistently explained by trap‐assisted recombination and energetic misalignment at the interfaces. Additionally, it is found that the saturation of the VOC at high intensities is caused by insufficient contact selectivity while heating effects are of minor importance. It is concluded that the analysis of the VOC does not provide reliable conclusions of the recombination pathways and that the knowledge of the QFLS‐VOC relation is of great importance. KW - electro-optical materials KW - perovskite solar cells KW - photovoltaic devices KW - thin films Y1 - 2019 U6 - https://doi.org/10.1002/aenm.201901631 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 33 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Caprioglio, Pietro A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Unold, Thomas A1 - Rech, Bernd A1 - Albrecht, Steve A1 - Neher, Dieter T1 - On the relation between the open‐circuit voltage and quasi‐Fermi level splitting in efficient perovskite solar cells T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Today's perovskite solar cells (PSCs) are limited mainly by their open‐circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity‐dependent measurements of the quasi‐Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin‐type PSCs with efficiencies above 20%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley‐Queisser theory. This has far‐reaching implications for the applicability of some well‐established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift‐diffusion simulations, the intensity dependence of the QFLS, the QFLS‐VOC offset and the ideality factor are consistently explained by trap‐assisted recombination and energetic misalignment at the interfaces. Additionally, it is found that the saturation of the VOC at high intensities is caused by insufficient contact selectivity while heating effects are of minor importance. It is concluded that the analysis of the VOC does not provide reliable conclusions of the recombination pathways and that the knowledge of the QFLS‐VOC relation is of great importance. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 774 KW - electro‐optical materials KW - perovskite solar cells KW - photovoltaic devices KW - thin films Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437595 SN - 1866-8372 IS - 774 ER - TY - JOUR A1 - Caprioglio, Pietro A1 - Zu, Fengshuo A1 - Wolff, Christian Michael A1 - Prieto, Jose A. Marquez A1 - Stolterfoht, Martin A1 - Becker, Pascal A1 - Koch, Norbert A1 - Unold, Thomas A1 - Rech, Bernd A1 - Albrecht, Steve A1 - Neher, Dieter T1 - High open circuit voltages in pin-type perovskite solar cells through strontium addition JF - Sustainable Energy & Fuels N2 - The incorporation of even small amounts of strontium (Sr) into lead-base hybrid quadruple cation perovskite solar cells results in a systematic increase of the open circuit voltage (V-oc) in pin-type perovskite solar cells. We demonstrate via absolute and transient photoluminescence (PL) experiments how the incorporation of Sr significantly reduces the non-radiative recombination losses in the neat perovskite layer. We show that Sr segregates at the perovskite surface, where it induces important changes of morphology and energetics. Notably, the Sr-enriched surface exhibits a wider band gap and a more n-type character, accompanied with significantly stronger surface band bending. As a result, we observe a significant increase of the quasi-Fermi level splitting in the neat perovskite by reduced surface recombination and more importantly, a strong reduction of losses attributed to non-radiative recombination at the interface to the C-60 electron-transporting layer. The resulting solar cells exhibited a V-oc of 1.18 V, which could be further improved to nearly 1.23 V through addition of a thin polymer interlayer, reducing the non-radiative voltage loss to only 110 meV. Our work shows that simply adding a small amount of Sr to the precursor solutions induces a beneficial surface modification in the perovskite, without requiring any post treatment, resulting in high efficiency solar cells with power conversion efficiency (PCE) up to 20.3%. Our results demonstrate very high V-oc values and efficiencies in Sr-containing quadruple cation perovskite pin-type solar cells and highlight the imperative importance of addressing and minimizing the recombination losses at the interface between perovskite and charge transporting layer. Y1 - 2019 U6 - https://doi.org/10.1039/c8se00509e SN - 2398-4902 VL - 3 IS - 2 SP - 550 EP - 563 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - García-Benito, Inés A1 - Quarti, Claudio A1 - Queloz, Valentin I. E. A1 - Hofstetter, Yvonne J. A1 - Becker-Koch, David A1 - Caprioglio, Pietro A1 - Neher, Dieter A1 - Orlandi, Simonetta A1 - Cavazzini, Marco A1 - Pozzi, Gianluca A1 - Even, Jacky A1 - Nazeeruddin, Mohammad Khaja A1 - Vaynzof, Yana A1 - Grancini, Giulia T1 - Fluorination of organic spacer impacts on the structural and optical response of 2D perovskites JF - Frontiers in Chemistry N2 - Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)(2)PbI4 and (Lf)(2)PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors. KW - fluorinated organic spacer KW - 2D perovskites KW - phase transition KW - temperature dependence KW - excitonic materials Y1 - 2020 U6 - https://doi.org/10.3389/fchem.2019.00946 SN - 2296-2646 VL - 7 SP - 1 EP - 11 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - García-Benito, Inés A1 - Quarti, Claudio A1 - Queloz, Valentin I. E. A1 - Hofstetter, Yvonne J. A1 - Becker-Koch, David A1 - Caprioglio, Pietro A1 - Neher, Dieter A1 - Orlandi, Simonetta A1 - Cavazzini, Marco A1 - Pozzi, Gianluca A1 - Even, Jacky A1 - Nazeeruddin, Mohammad Khaja A1 - Vaynzof, Yana A1 - Grancini, Giulia T1 - Fluorination of organic spacer impacts on the structural and optical response of 2D perovskites T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)(2)PbI4 and (Lf)(2)PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1421 KW - fluorinated organic spacer KW - 2D perovskites KW - phase transition KW - temperature dependence KW - excitonic materials Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-512420 SN - 1866-8372 ER - TY - JOUR A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Zhang, Jiahuan A1 - Pena-Camargo, Francisco A1 - Sveinbjornsson, Kari A1 - Zu, Fengshuo A1 - Menzel, Dorothee A1 - Warby, Jonathan H. A1 - Li, Jinzhao A1 - Koch, Norbert A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Albrecht, Steve T1 - Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells JF - Solar RRL N2 - Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3% with a MeO-2PACz hole-transporting layer and 20.8% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved. KW - CsPbI2Br KW - efficiency potentials KW - inorganic perovskites KW - photoluminescence KW - solar cells KW - voltage losses Y1 - 2022 U6 - https://doi.org/10.1002/solr.202200690 SN - 2367-198X VL - 6 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Pisoni, Stefano A1 - Stolterfoht, Martin A1 - Lockinger, Johannes A1 - Moser, Thierry A1 - Jiang, Yan A1 - Caprioglio, Pietro A1 - Neher, Dieter A1 - Buecheler, Stephan A1 - Tiwari, Ayodhya N. T1 - On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C-60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from similar to 1.23 eV for the bare absorber, just similar to 90 meV below the radiative limit, to similar to 1.10 eV when C-60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications via vacuum deposited interlayers (BCP, B4PyMPM, 3TPYMB, and LiF). An improvement in QFLS of similar to 30-40 meV is observed after interlayer deposition and confirmed by comparable improvements in the open-circuit voltage after implementation of these interfacial modifications in flexible PSCs. Further investigations on absorber/hole transport layer (HTL) interface point out the detrimental role of dopants in Spiro-OMeTAD film (widely employed HTL in the community) as recombination centers upon oxidation and light exposure. [GRAPHICS] . T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1110 KW - Perovskite solar cell KW - flexible KW - interface engineering KW - non-radiative recombination KW - quasi-Fermi level splitting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459617 SN - 1866-8372 IS - 1110 ER - TY - JOUR A1 - Pisoni, Stefano A1 - Stolterfoht, Martin A1 - Lockinger, Johannes A1 - Moser, Thierry A1 - Jiang, Yan A1 - Caprioglio, Pietro A1 - Neher, Dieter A1 - Buecheler, Stephan A1 - Tiwari, Ayodhya N. T1 - On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells JF - Science and technology of advanced materials : STAM N2 - The possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C-60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from similar to 1.23 eV for the bare absorber, just similar to 90 meV below the radiative limit, to similar to 1.10 eV when C-60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications via vacuum deposited interlayers (BCP, B4PyMPM, 3TPYMB, and LiF). An improvement in QFLS of similar to 30-40 meV is observed after interlayer deposition and confirmed by comparable improvements in the open-circuit voltage after implementation of these interfacial modifications in flexible PSCs. Further investigations on absorber/hole transport layer (HTL) interface point out the detrimental role of dopants in Spiro-OMeTAD film (widely employed HTL in the community) as recombination centers upon oxidation and light exposure. [GRAPHICS] . KW - Perovskite solar cell KW - flexible KW - interface engineering KW - non-radiative recombination KW - quasi-Fermi level splitting Y1 - 2019 U6 - https://doi.org/10.1080/14686996.2019.1633952 SN - 1468-6996 SN - 1878-5514 VL - 20 SP - 786 EP - 795 PB - Taylor & Francis CY - Abingdon ER -