TY - JOUR A1 - Kleinpeter, Erich A1 - Marsat, Jean-Noël A1 - Heydenreich, Matthias A1 - von Berlepsch, Hans A1 - Laschewsky, André T1 - Self-Assembly into Multicompartment Micelles and Selective Solubilization by Hydrophilic-Lipophilic- Fluorophilic Block Copolymers Y1 - 2011 SN - 0024-9297 ER - TY - JOUR A1 - Koc, Julian A1 - Schardt, Lisa A1 - Nolte, Kim A1 - Beyer, Cindy A1 - Eckhard, Till A1 - Schwiderowski, Philipp A1 - Clarke, Jessica L. A1 - Finlay, John A. A1 - Clare, Anthony S. A1 - Muhler, Martin A1 - Laschewsky, André A1 - Rosenhahn, Axel T1 - Effect of dipole orientation in mixed, charge-equilibrated self-assembled monolayers on protein adsorption and marine biofouling JF - ACS applied materials & interfaces N2 - While zwitterionic interfaces are known for their excellent low-fouling properties, the underlying molecular principles are still under debate. In particular, the role of the zwitterion orientation at the interface has been discussed recently. For elucidation of the effect of this parameter, self-assembled monolayers (SAMs) on gold were prepared from stoichiometric mixtures of oppositely charged alkyl thiols bearing either a quaternary ammonium or a carboxylate moiety. The alkyl chain length of the cationic component (11-mercaptoundecyl)-N,N,N-trimethylammonium, which controls the distance of the positively charged end group from the substrate's surface, was kept constant. In contrast, the anionic component and, correspondingly, the distance of the negatively charged carboxylate groups from the surface was varied by changing the alkyl chain length in the thiol molecules from 7 (8-mercaptooctanoic acid) to 11 (12-mercaptododecanoic acid) to 15 (16-mercaptohexadecanoic acid). In this way, the charge neutrality of the coating was maintained, but the charged groups exposed at the interface to water were varied, and thus, the orientation of the dipoles in the SAMs was altered. In model biofouling studies, protein adsorption, diatom accumulation, and the settlement of zoospores were all affected by the altered charge distribution. This demonstrates the importance of the dipole orientation in mixed-charged SAMs for their inertness to nonspecific protein adsorption and the accumulation of marine organisms. Overall, biofouling was lowest when both the anionic and the cationic groups were placed at the same distance from the substrate's surface. KW - SAM KW - antifouling coatings KW - zwitterionic KW - XPS KW - Navicula perminuta KW - Ulva linza KW - SPR Y1 - 2020 U6 - https://doi.org/10.1021/acsami.0c11580 SN - 1944-8244 SN - 1944-8252 VL - 12 IS - 45 SP - 50953 EP - 50961 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Koc, Julian A1 - Simovich, Tomer A1 - Schönemann, Eric A1 - Chilkoti, Ashutosh A1 - Gardner, Harrison A1 - Swain, Geoffrey W. A1 - Hunsucker, Kelli A1 - Laschewsky, André A1 - Rosenhahn, Axel T1 - Sediment challenge to promising ultra-low fouling hydrophilic surfaces in the marine environment JF - Biofouling : the journal of bioadhesion and biofilm research N2 - Hydrophilic coatings exhibit ultra-low fouling properties in numerous laboratory experiments. In stark contrast, the antifouling effect of such coatings in vitro failed when performing field tests in the marine environment. The fouling release performance of nonionic and zwitterionic hydrophilic polymers was substantially reduced compared to the controlled laboratory environment. Microscopy and spectroscopy revealed that a large proportion of the accumulated material in field tests contains inorganic compounds and diatomaceous soil. Diatoms adhered to the accumulated material on the coating, but not to the pristine polymer. Simulating field tests in the laboratory using sediment samples collected from the test sites showed that incorporated sand and diatomaceous earth impairs the fouling release characteristics of the coatings. When exposed to marine sediment from multiple locations, particulate matter accumulated on these coatings and served as attachment points for diatom adhesion and enhanced fouling. Future developments of hydrophilic coatings should consider accumulated sediment and its potential impact on the antifouling performance. KW - hydrogel KW - field test KW - fouling release KW - marine biofouling KW - sediment Y1 - 2019 U6 - https://doi.org/10.1080/08927014.2019.1611790 SN - 0892-7014 SN - 1029-2454 VL - 35 IS - 4 SP - 454 EP - 462 PB - Taylor & Francis CY - London ER - TY - GEN A1 - Koch, Horst A1 - Laschewsky, André A1 - Ringsdorf, Helmut A1 - Teng, Kang T1 - Photodimerization and photopolymerization of amphiphilic cinnamic acid derivatives in oriented monolayers, vesicles and solution N2 - Cinnamic acid moieties were incorporated into amphiphilic compounds containing one and two alkyl chains. These lipid-like compounds with photoreactive units undergo self-organization to form monolayers at the gas-water interface and bilayer structures (vesicles) in aqueous solutions. The photoreaction of the cinnamic acid moiety induced by 254 nm UV light was investigated in the crystalline state, in monolayers, in vesicles and in solution in organic solvents. The single-chain amphiphiles undergo dimerization to yield photoproducts with twice the molecular weight of the corresponding monomers in organized systems. The photoreaction of amphiphiles containing two cinnamic acid groups occurs via two mechanisms: The intramolecular dimerization produces bicycles, with retention of the molecular weight of the corresponding monomer. The intermolecular reaction leads to oligomeric and polymeric photoproducts. In contrast to the single-chain amphiphiles, photodimerization processes of lipoids containing two cinnamic acid moieties also occur in solution in organic solvents. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 078 Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17111 ER - TY - JOUR A1 - Koetse, Marc M. A1 - Laschewsky, André A1 - Jonas, Alain M. A1 - Verbiest, T. T1 - Orientation of functional groups in polyelectrolyte multilayers studied by second-harmonic generation (SHG) Y1 - 2002 SN - 0927-7757 ER - TY - JOUR A1 - Koetse, Marc M. A1 - Laschewsky, André A1 - Jonas, Alain M. A1 - Wagenknecht, W. T1 - The influence of charge density and distribution on the internal structure of electrostatically self-assembled polyelectrolyte films N2 - Electrostatically self-assembled (ESA) polyelectrolyte films show in general no internal structure. The use of special polycations, however, namely of lyotropic ionenes, may give rise to highly ordered coatings. In this article, the influence of the charge density of the polyanion, as well as the distribution of the charged groups within this polymer, is examined, using a series of anionic cellulose derivatives. Various techniques were used to study the films? growth and internal structure. Both showed to be affected in particular by the charge density but also by the substitution pattern. Y1 - 2002 ER - TY - JOUR A1 - Kopec, Maciej A1 - Lapok, Lukasz A1 - Laschewsky, André A1 - Zapotoczny, Szczepan A1 - Nowakowska, Maria T1 - Polyelectrolyte multilayers with perfluorinated phthalocyanine selectively entrapped inside the perfluorinated nanocompartments JF - Soft matter N2 - A novel perfluorinated magnesium phthalocyanine (MgPcF64) was synthesized and employed to probe nanodomains in hydrophobically modified, amphiphilic cationic polyelectrolytes bearing alkyl and/or fluoroalkyl side chains. MgPcF64 was found to be solubilized exclusively in the aqueous solutions of the fluorocarbon modified polycations, occupying the perfluorinated nanocompartments provided, while analogous polyelectrolytes with alkyl side chains forming hydrocarbon nanocompartments could not host the MgPcF64 dye. Multilayer films were fabricated by means of the layer-by-layer (LbL) deposition method using sodium poly(styrene sulfonate) as a polyanion. Linear multilayer growth was confirmed by UV-Vis spectroscopy and spectroscopic ellipsometry. Atomic force microscopy studies indicated that the micellar conformation of the polycations is preserved in the multilayer films. Fluorescence spectroscopy measurements confirmed that MgPcF64 stays embedded inside the fluorocarbon domains after the deposition process. This facile way of selectively incorporating water-insoluble, photoactive molecules into the structure of polyelectrolyte multilayers may be utilized for nanoengineering of ultrathin film-based optoelectronic devices. Y1 - 2014 U6 - https://doi.org/10.1039/c2sm26938d SN - 1744-683X SN - 1744-6848 VL - 10 IS - 10 SP - 1481 EP - 1488 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kopec, Maciej A1 - Niemiec, Wiktor A1 - Laschewsky, André A1 - Nowakowska, Maria A1 - Zapotoczny, Szczepan T1 - Photoinduced energy and electron transfer in micellar multilayer films JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Micellar multilayer films were prepared from an amphiphilic comb-like polycation ("polysoap") and the polyanion poly(styrene sulfonate) (PSS) using alternate polyelectrolyte layer-by-layer (LbL) self-assembly. Linear growth of the film thickness was evidenced by UV-vis spectroscopy and spectroscopic ellipsometry. Imaging by atomic force microscopy (AFM) indicated that the micellar conformation adopted by the polycation in solutions was preserved in the films. Thus, hydrophobic photoactive molecules, which were solubilized by the hydrophobic nanodomains of the micellar polymer prior to deposition, could be transferred into the films. Photoinduced energy transfer was observed in the nanostructured multilayers between naphthalene (donor) and perylene (acceptor) molecules embedded inside the polymer micelles. The efficiency of the energy transfer process can be controlled to some extent by introducing spacer layers between the layers containing the donor or acceptor, revealing partial stratification of the micellar LbL films. Also, photoinduced electron transfer was evidenced between perylene (donor) and butyl viologen (acceptor) molecules embedded inside the multilayers by steady-state fluorescence spectroscopy. The obtained photoactive nanostructures are promising candidates for solar-to-chemical energy conversion systems. Y1 - 2014 U6 - https://doi.org/10.1021/jp410808z SN - 1932-7447 VL - 118 IS - 4 SP - 2215 EP - 2221 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kotzev, Anton A1 - Laschewsky, André A1 - Adriaensens, Pieter A1 - Gelan, Jan T1 - Micellar Polymers with Hydrocarbon and Fluorocarbon Hydrophobic Chains : a Strategy to Multicompartment Micelles N2 - Cationic ionenes bearing hydrophobic side chains were synthesized, which behave as micellar polymers of the polysoap type. The hydrophobic chains were either hydrocarbons or fluorocarbons, or a mixture of both, in the form of statistical as well as block copolymers. These amphiphilic polymers were studied and compared with each other and with low molar mass analogous surfactants, especially with respect to their hydrophobic association in aqueous solution. The particular molecular structure of the ionenes synthesized results in polymeric surfactants with high mobility of the fluorocarbon chains. Most noteworthy, the behavior of the hydrocarbon-fluorocarbon block copolymer soaps in aqueous solution indicates microphase separation into hydrocarbon-rich and fluorocarbon-rich hydrophobic domains, thus yielding multicompartment micelles. Y1 - 2002 ER - TY - JOUR A1 - Kreuzer, Lucas A1 - Lindenmeir, Christoph A1 - Geiger, Christina A1 - Widmann, Tobias A1 - Hildebrand, Viet A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Poly(sulfobetaine) versus poly(N-isopropylmethacrylamide) BT - co-nonsolvency-type behavior of thin films in a water/methanol atmosphere JF - Macromolecules : a publication of the American Chemical Society N2 - The swelling and co-nonsolvency behaviors in pure H2O and in a mixed H2O/CH3OH vapor atmosphere of two different polar, water-soluble polymers in thin film geometry are studied in situ. Films of a zwitterionic poly(sulfobetaine), namely, poly[3-((2-(methacryloyloxy)ethyl)dimethylammonio) propane-1-sulfonate] (PSPE), and a polar nonionic polymer, namely, poly(N-isopropylmethacrylamide) (PNIPMAM), are investigated in real time by spectral reflectance (SR) measurements and Fourier transform infrared (FTIR) spectroscopy. Whereas PSPE is insoluble in methanol, PNIPMAM is soluble but exhibits cononsolvency behavior in water/methanol mixtures. First, the swelling of PSPE and PNIPMAM thin films in H2O vapor is followed. Subsequently, CH3OH is added to the vapor atmosphere, and its contracting effect on the water-swollen films is monitored, revealing a co-nonsolvency-type behavior for PNIPMAM and PSPE. SR measurements indicate that PSPE and PNIPMAM behave significantly different during the H2O swelling and subsequent exposure to CH3OH, not only with respect to the amounts of absorbed water and CH3OH, but also to the cosolvent-induced contraction mechanisms. While PSPE thin films exhibit an abrupt one-step contraction, the contraction of PNIPMAM thin films occurs in two steps. FTIR studies corroborate these findings on a molecular scale and reveal the role of the specific functional groups, both during the swelling and the cosolvent-induced switching of the solvation state. Y1 - 2021 U6 - https://doi.org/10.1021/acs.macromol.0c02281 SN - 0024-9297 SN - 1520-5835 VL - 54 IS - 3 SP - 1548 EP - 1556 PB - American Chemical Society CY - Washington ER -