TY - GEN A1 - Goodwin, Guillaume C. H. A1 - Mudd, Simon M. A1 - Clubb, Fiona J. T1 - Unsupervised detection of salt marsh platforms BT - a topographic method T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94% for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90% for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions, associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 936 KW - accuracy assessment KW - tidal flats KW - vegetation KW - extraction KW - elevation KW - sedimentation KW - opportunity KW - ecosystems KW - morphology KW - salinity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459329 SN - 1866-8372 IS - 936 SP - 239 EP - 255 ER - TY - THES A1 - Leiser, Rico T1 - Biogeochemical processes governing microplastic transport in freshwater reservoirs N2 - The presented study investigated the influence of microbial and biogeochemical processes on the physical transport related properties and the fate of microplastics in freshwater reservoirs. The overarching goal was to elucidate the mechanisms leading to sedimentation and deposition of microplastics in such environments. This is of importance, as large amounts of initially buoyant microplastics are found in reservoir sediments worldwide. However, the transport processes which lead to microplastics accumulation in sediments, were up to now understudied. The impact of biofilm formation on the density and subsequent sedimentation of microplastics was investigated in the eutrophic Bautzen reservoirs (Chapter 2). Biofilms are complex microbial communities fixed to submerged surfaces through a slimy organic film. The mineral calcite was detected in the biofilms, which led to the sinking of the overgrown microplastic particles. The calcite was of biogenic origin, most likely precipitated by sessile cyanobacteria within the biofilms. Biofilm formation was also studied in the mesotrophic Malter reservoir. Unlike in Bautzen reservoir, biofilm formation did not govern the sedimentation of different microplastics in Malter reservoir (Chapter 3). Instead autumnal lake mixing led to the formation of sinking aggregates of microplastics and iron colloids. Such colloids form when anoxic, iron-rich water from the hypolimnion mixes with the oxygenated epilimnetic waters. The colloids bind organic material from the lake water, which leads to the formation of large and sinking iron-organo flocs. Hence, iron-organo floc formation and their influence on the buoyancy or burial of microplastics into sediments of Bautzen reservoir was studied in laboratory experiments (Chapter 4). Microplastics of different shapes (fiber, fragment, sphere) and sizes were readily incorporated into sinking iron-organo flocs. By this initially buoyant polyethylene microplastics were transported on top of sediments from Bautzen reservoir. Shortly after deposition, the microplastic bearing flocs started to subside and transported the pollutants into deeper sediment layers. The microplastics were not released from the sediments within two months of laboratory incubation. The stability of floc microplastic deposition was further investigated employing experiments with the iron reducing model organism Shewanella oneidensis (Chapter 5). It was shown, that reduction or re-mineralization of the iron minerals did not affect the integrity of the iron-organo flocs. The organic matrix was stable under iron reducing conditions. Hence, no incorporated microplastics were released from the flocs. As similar processes are likely to take place in natural sediments, this might explain the previous described low microplastic release from the sediments. This thesis introduced different mechanisms leading to the sedimentation of initially buoyant microplastics and to their subsequent deposition in freshwater reservoirs. Novel processes such as the aggregation with iron-organo flocs were identified and the understudied issue of biofilm densification through biogenic mineral formation was further investigated. The findings might have implications for the fate of microplastics within the river-reservoir system and outline the role of freshwater reservoirs as important accumulation zone for microplastics. Microplastics deposited in the sediments of reservoirs might not be transported further by through flowing river. Hence the study might contribute to better risk assessment and transport balances of these anthropogenic contaminants. N2 - Die vorliegende Arbeit befasst sich mit dem Einfluss mikrobiologischer und biogeochemischer Prozesse auf die physikalischen Transporteigenschaften und den Verbleib von Mikroplastik in Stauseen. Ein Schwerpunkt lag auf der Untersuchung von Mechanismen, welche die Sedimentation von Mikroplastik einleiten. Dies ist von hoher Relevanz, da große Mengen eigentlich schwimmfähigen Mikroplastiks in Stauseesedimenten gefunden werden, aber die Transportprozesse vom Wasser in das Sediment bislang unbekannt waren. In der eutrophen Talsperre Bautzen wurde der Einfluss der Biofilmbildung auf die Dichte und Sedimentation von Mikroplastik untersucht (Kapitel 2). Biofilme sind komplexe mikrobielle Lebensgemeinschaften, welche sich in Form schleimiger Filme auf im Wasser befindlichen Oberflächen bilden. Es konnte ein Zusammenhang zwischen der starken Dichtezunahme beziehungsweise dem Absinken der bewachsenen Partikel und dem Vorhandensein des Minerals Calcit innerhalb des aufwachsenden Biofilms festgestellt werden. Das Calcit war biogenen Ursprungs und wurde infolge der Photosynthese sessiler Cyanobakterien gebildet. In der mesotrophen Talsperre Malter wurde ebenfalls die Biofilmbildung auf Mikroplastik untersucht (Kapitel 3). Dort veränderte die Bildung von mikrobiellen Biofilmen das Sedimentationsverhalten von verschiedenen Mikroplastik-Polymeren nicht. Stattdessen wurde beobachtet, dass die Herbstzirkulation des Sees zur Bildung von Aggregaten aus Mikroplastik und mineralischen Eisenkolloiden führte. Diese Eisenkolloide bilden sich durch die Mischung von eisenreichen, sauerstofffreien Tiefenwasser mit sauerstoffhaltigem Oberflächenwasser. Die Kolloide verbinden sich mit organischem Material aus dem See und formen dadurch größere Flocken. Da die Bildung von eisenhaltigen Flocken ein für geschichtete Stauseen wichtiger Prozess ist, wurde ihr Einfluss auf die Schwimmfähigkeit von Mikroplastik und den darauffolgenden Einbau in die Sedimente untersucht (Kapitel 4). In Laborversuchen konnten verschiedene Formen (Fasern, Fragmente, Kugeln) und Größenklassen von Mikroplastik in die Flocken eingebaut werden. Da die Flocken im Wasser absinken, können sie zuvor schwimmfähiges Polyethylen-Mikroplastik zur Sedimentoberfläche transportieren. Dort angekommen, beginnen die Flocken zusammen mit dem Mikroplastik langsam in das Sediment einzusinken und transportieren es dadurch in tiefere Sedimentschichten. Im Labor konnte innerhalb von zwei Monaten keine signifikante Freisetzung des so transportierten Mikroplastiks aus den Sedimenten beobachtet werden. Die Transformation der Flocken und welchen Einfluss dies auf die Freisetzung von Mikroplastik hat, wurde in Versuchen mit dem eisenreduzierenden Modelorganismus Shewanella oneidensis untersucht (Kapitel 5). Hierbei zeigte sich, dass die Auflösung oder Umwandlung des Eisens beziehungsweise der Eisenminerale innerhalb der Flocken, nicht zur Zerstörung der Flocken führte. Die organische Matrix der Flocken blieb unverändert stabil und umschloss auch weiterhin das eingebaute Mikroplastik. Da im Sediment ähnliche Abbauprozesse ablaufen, gibt dies einen möglichen Hinweis darauf, warum abgelagertes Mikroplastik nicht mehr aus Sedimenten freigesetzt wird. Im Rahmen dieser Arbeit konnte gezeigt werden, dass in Talsperren unterschiedliche Prozesse zum Absinken und zur Deposition von Mikroplastik führen. Es wurden neuartige Prozesse wie die Aggregation mit eisenhaltigen Flocken identifiziert und ungewöhnliche Aspekte wie die biogene Mineralbildung näher beleuchtet. Dadurch können wichtige Implikationen hinsichtlich des Transports von Mikroplastik in Fluss- Stausee-Systemen abgeleitet werden. Aufgrund der beschriebenen Sedimentationsprozesse sind Stauseen wichtige Akkumulationszonen für Mikroplastik. Im Stausee sedimentierendes Mikroplastik wird potentiell nicht vom aufgestauten Fluss weitertransportiert. Daher könnten die hier beschriebenen Prozesse zu einer Verbesserung von Risikoabschätzungen und Transportbilanzen dieser anthropogenen Belastung führen. KW - microplastics KW - reservoirs KW - calcite KW - iron KW - biofouling KW - sedimentation KW - polyethylene KW - biofilms KW - Mikroplastik KW - Stauhaltungen KW - Kalzit KW - Eisen KW - Sedimentation KW - Polyethylen KW - Biofilme Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-520240 ER -