TY - THES A1 - Pingel, Patrick T1 - Morphology, charge transport properties, and molecular doping of thiophene-based organic semiconducting thin films T1 - Morphologie, Ladungstransporteigenschaften und molekulares Dotieren thiophenbasierter organischer Halbleiterschichten N2 - Organic semiconductors combine the benefits of organic materials, i.e., low-cost production, mechanical flexibility, lightweight, and robustness, with the fundamental semiconductor properties light absorption, emission, and electrical conductivity. This class of material has several advantages over conventional inorganic semiconductors that have led, for instance, to the commercialization of organic light-emitting diodes which can nowadays be found in the displays of TVs and smartphones. Moreover, organic semiconductors will possibly lead to new electronic applications which rely on the unique mechanical and electrical properties of these materials. In order to push the development and the success of organic semiconductors forward, it is essential to understand the fundamental processes in these materials. This thesis concentrates on understanding how the charge transport in thiophene-based semiconductor layers depends on the layer morphology and how the charge transport properties can be intentionally modified by doping these layers with a strong electron acceptor. By means of optical spectroscopy, the layer morphologies of poly(3-hexylthiophene), P3HT, P3HT-fullerene bulk heterojunction blends, and oligomeric polyquaterthiophene, oligo-PQT-12, are studied as a function of temperature, molecular weight, and processing conditions. The analyses rely on the decomposition of the absorption contributions from the ordered and the disordered parts of the layers. The ordered-phase spectra are analyzed using Spano’s model. It is figured out that the fraction of aggregated chains and the interconnectivity of these domains is fundamental to a high charge carrier mobility. In P3HT layers, such structures can be grown with high-molecular weight, long P3HT chains. Low and medium molecular weight P3HT layers do also contain a significant amount of chain aggregates with high intragrain mobility; however, intergranular connectivity and, therefore, efficient macroscopic charge transport are absent. In P3HT-fullerene blend layers, a highly crystalline morphology that favors the hole transport and the solar cell efficiency can be induced by annealing procedures and the choice of a high-boiling point processing solvent. Based on scanning near-field and polarization optical microscopy, the morphology of oligo-PQT-12 layers is found to be highly crystalline which explains the rather high field-effect mobility in this material as compared to low molecular weight polythiophene fractions. On the other hand, crystalline dislocations and grain boundaries are identified which clearly limit the charge carrier mobility in oligo-PQT-12 layers. The charge transport properties of organic semiconductors can be widely tuned by molecular doping. Indeed, molecular doping is a key to highly efficient organic light-emitting diodes and solar cells. Despite this vital role, it is still not understood how mobile charge carriers are induced into the bulk semiconductor upon the doping process. This thesis contains a detailed study of the doping mechanism and the electrical properties of P3HT layers which have been p-doped by the strong molecular acceptor tetrafluorotetracyanoquinodimethane, F4TCNQ. The density of doping-induced mobile holes, their mobility, and the electrical conductivity are characterized in a broad range of acceptor concentrations. A long-standing debate on the nature of the charge transfer between P3HT and F4TCNQ is resolved by showing that almost every F4TCNQ acceptor undergoes a full-electron charge transfer with a P3HT site. However, only 5% of these charge transfer pairs can dissociate and induce a mobile hole into P3HT which contributes electrical conduction. Moreover, it is shown that the left-behind F4TCNQ ions broaden the density-of-states distribution for the doping-induced mobile holes, which is due to the longrange Coulomb attraction in the low-permittivity organic semiconductors. N2 - Organische Halbleiter kombinieren die molekulare Vielfalt und Anpassbarkeit, die mechanische Flexibilität und die preisgünstige Herstellung und Verarbeitung von Kunststoffen mit fundamentalen Halbleitereigenschaften wie Lichtabsorption und -emission und elektrischer Leitfähigkeit. Unlängst finden organische Leuchtdioden Anwendung in den Displays von TV-Geräten und Smartphones. Für die weitere Entwicklung und den Erfolg organischer Halbleiter ist das Verständnis derer physikalischer Grundlagen unabdingbar. Ein für viele Bauteile fundamentaler Prozess ist der Transport von Ladungsträgern in der organischen Schicht. Die Ladungstransporteigenschaften werden maßgeblich durch die Struktur dieser Schicht bestimmt, z.B. durch den Grad der molekularen Ordnung, die molekulare Verbindung von kristallinen Domänen und durch Defekte der molekularen Packung. Mittels optischer Spektroskopie werden in dieser Arbeit die temperatur-, molekulargewichts- und lösemittelabhängigen Struktureigenschaften poly- und oligothiophenbasierter Schichten untersucht. Dabei basiert die Analyse der Absorptionsspektren auf der Zerlegung in die spezifischen Anteile geordneten und ungeordneten Materials. Es wird gezeigt, dass sich hohe Ladungsträgerbeweglichkeiten dann erreichen lassen, wenn der Anteil der geordneten Bereiche und deren molekulare Verbindung in den Schichten möglichst hoch und die energetische Unordnung in diesen Bereichen möglichst klein ist. Der Ladungstransport in organischen Halbleitern kann außerdem gezielt beeinflusst werden, indem die Ladungsträgerdichte und die elektrische Leitfähigkeit durch molekulares Dotieren, d.h. durch das Einbringen von Elektronenakzeptoren oder -donatoren, eingestellt werden. Obwohl der Einsatz dotierter Schichten essentiell für effiziente Leuchtdioden und Solarzellen ist, ist der Mechanismus, der zur Erzeugung freier Ladungsträger im organischen Halbleiter führt, derzeit unverstanden. In dieser Arbeit wird der Ladungstransfer zwischen dem prototypischen Elektronendonator P3HT und dem Akzeptor F4TCNQ untersucht. Es wird gezeigt, dass, entgegen verbreiteter Vorstellungen, fast alle F4TCNQ-Akzeptoren einen ganzzahligen Ladungstransfer mit P3HT eingehen, aber nur 5% dieser Paare dissoziieren und einen beweglichen Ladungsträger erzeugen, der zur elektrischen Leitfähigkeit beiträgt. Weiterhin wird gezeigt, dass die zurückgelassenen F4TCNQ-Akzeptorionen Fallenzustände für die beweglichen Ladungsträger darstellen und so die Ladungsträgerbeweglichkeit in P3HT bei schwacher Dotierung absinkt. Die elektrischen Kenngrößen Ladungsträgerkonzentration, Beweglichkeit und Leitfähigkeit von F4TCNQ-dotierten P3HT-Schichten werden in dieser Arbeit erstmals in weiten Bereichen verschiedener Akzeptorkonzentrationen untersucht. KW - Polythiophen KW - organische Elektronik KW - molekulares Dotieren KW - organischer Halbleiter KW - Morphologie KW - polythiohene KW - organic electronics KW - molecular doping KW - organic semiconductor KW - morphology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-69805 ER - TY - THES A1 - Steyrleuthner, Robert T1 - Korrelation von Struktur, optischen Eigenschaften und Ladungstransport in einem konjugierten Naphthalindiimid-Bithiophen Copolymer mit herausragender Elektronenmobilität T1 - Correlation of structure, optical properties and charge transport in a conjugated naphtalendiimide-bithiophene copolymer with outstanding electron mobility N2 - Organische Halbleiter besitzen neue, bemerkenswerte Materialeigenschaften, die sie für die grundlegende Forschung wie auch aktuelle technologische Entwicklung (bsw. org. Leuchtdioden, org. Solarzellen) interessant werden lassen. Aufgrund der starken konformative Freiheit der konjugierten Polymerketten führt die Vielzahl der möglichen Anordnungen und die schwache intermolekulare Wechselwirkung für gewöhnlich zu geringer struktureller Ordnung im Festkörper. Die Morphologie hat gleichzeitig direkten Einfluss auf die elektronische Struktur der organischen Halbleiter, welches sich meistens in einer deutlichen Reduktion der Ladungsträgerbeweglichkeit gegenüber den anorganischen Verwandten zeigt. So stellt die Beweglichkeit der Ladungen im Halbleiter einen der limitierenden Faktoren für die Leistungsfähigkeit bzw. den Wirkungsgrad von funktionellen organischen Bauteilen dar. Im Jahr 2009 wurde ein neues auf Naphthalindiimid und Bithiophen basierendes Dornor/Akzeptor Copolymer vorgestellt [P(NDI2OD‑T2)], welches sich durch seine außergewöhnlich hohe Ladungsträgermobilität auszeichnet. In dieser Arbeit wird die Ladungsträgermobilität in P(NDI2OD‑T2) bestimmt, und der Transport durch eine geringe energetischer Unordnung charakterisiert. Obwohl dieses Material zunächst als amorph beschrieben wurde zeigt eine detaillierte Analyse der optischen Eigenschaften von P(NDI2OD‑T2), dass bereits in Lösung geordnete Vorstufen supramolekularer Strukturen (Aggregate) existieren. Quantenchemische Berechnungen belegen die beobachteten spektralen Änderungen. Mithilfe der NMR-Spektroskopie kann die Bildung der Aggregate unabhängig von optischer Spektroskopie bestätigt werden. Die Analytische Ultrazentrifugation an P(NDI2OD‑T2) Lösungen legt nahe, dass sich die Aggregation innerhalb der einzelnen Ketten unter Reduktion des hydrodynamischen Radius vollzieht. Die Ausbildung supramolekularen Strukturen nimmt auch eine signifikante Rolle bei der Filmbildung ein und verhindert gleichzeitig die Herstellung amorpher P(NDI2OD‑T2) Filme. Durch chemische Modifikation der P(NDI2OD‑T2)-Kette und verschiedener Prozessierungs-Methoden wurde eine Änderung des Kristallinitätsgrades und gleichzeitig der Orientierung der kristallinen Domänen erreicht und mittels Röntgenbeugung quantifiziert. In hochauflösenden Elektronenmikroskopie-Messungen werden die Netzebenen und deren Einbettung in die semikristallinen Strukturen direkt abgebildet. Aus der Kombination der verschiedenen Methoden erschließt sich ein Gesamtbild der Nah- und Fernordnung in P(NDI2OD‑T2). Über die Messung der Elektronenmobilität dieser Schichten wird die Anisotropie des Ladungstransports in den kristallographischen Raumrichtungen von P(NDI2OD‑T2) charakterisiert und die Bedeutung der intramolekularen Wechselwirkung für effizienten Ladungstransport herausgearbeitet. Gleichzeitig wird deutlich, wie die Verwendung von größeren und planaren funktionellen Gruppen zu höheren Ladungsträgermobilitäten führt, welche im Vergleich zu klassischen semikristallinen Polymeren weniger sensitiv auf die strukturelle Unordnung im Film sind. N2 - Organic semiconductors are in the focus of recent research and technological development (eg. for organic light-emitting diodes and solar cells) due to their specific and outstanding material properties. The strong conformational freedom of conjugated polymer chains usually leads to a large number of possible geometric arrangements while weak intermolecular interactions additionally lead to poor structural order in the solid state. At the same time the morphology of those systems has direct influence on the electronic structure of the organic semiconductor which is accompanied by a significant reduction of the charge carrier mobility in contrast to their inorganic counterparts. In that way the transport of charges within the semiconductor represents one of the main limiting factors regarding the performance and efficiency of functional organic devices. In 2009 Facchetti and coworkers presented a novel conjugated donor/acceptor copolymer based on naphthalene diimide and bithiophene [P(NDI2OD‑T2)] which was characterized by an outstanding charge carrier mobility. In this work the mobility of electrons and holes in the bulk of P(NDI2OD‑T2) is determined by single carrier devices and the time-of-flight technique. The results imply a low energetic disorder in these polymer layers. While the material was initially expected to be mainly amorphous, a detailed study of the photophysical properties of P(NDI2OD‑T2) shows that precursors of supramolecular assemblies (aggregates) are already formed in polymer solution. Quantum-chemical calculations support the occurring optical changes. NMR spectroscopy was applied to independently prove the formation of chain aggregates in commonly used organic solvents. The investigation of P(NDI2OD‑T2) solutions by analytical ultracentrifugation implies that aggregation mainly proceeds within single polymer chains by reduction of the hydrodynamic radius. To understand the influence of the chemical structure, pre-aggregation and crystal packing of conventional regioregular P(NDI2OD-T2) on the charge transport, the corresponding regioirregular polymer RI-P(NDI2OD-T2) was synthesized. By combining optical, X-ray, and transmission electron microscopy data, a quantitatively characterization of the aggregation, crystallization, and backbone orientation of all of the polymer films was possible, which was then correlated to the electron mobilities in electron-only diodes. The anisotropy of the charge transport along the different crystallographic directions is demonstrated and how the mobility depends on π-stacking but is insensitive to the degree or coherence of lamellar stacking. The comparison between the regioregular and regioirregular polymers also shows how the use of large planar functional groups leads to improved charge transport, with mobilities that are less affected by chemical and structural disorder with respect to classic semicrystalline polymers such as poly(3-hexylthiophene). KW - organische Halbleiter KW - Ladungstransport KW - Solarzellen KW - Polymere KW - Photophysik KW - organic semiconductor KW - charge transport KW - solar cells KW - polymers KW - photo physics Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-71413 ER -