TY - GEN A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Öztürk, Ugur A1 - Kurths, Jürgen A1 - Merz, Bruno T1 - Optimal design of hydrometric station networks based on complex network analysis T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure – the weighted degree–betweenness (WDB) measure – to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 951 KW - identifying influential nodes KW - climate networks KW - rainfall KW - streamflow KW - synchronization KW - precipitation KW - classification KW - events Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471006 SN - 1866-8372 IS - 951 ER - TY - THES A1 - Bamberg, Marlene T1 - Planetary mapping tools applied to floor-fractured craters on Mars T1 - Planetare Analysewerkzeuge am Anwendungsgebiet von Kratern mit zerbrochenen Boeden auf dem Mars N2 - Planetary research is often user-based and requires considerable skill, time, and effort. Unfortunately, self-defined boundary conditions, definitions, and rules are often not documented or not easy to comprehend due to the complexity of research. This makes a comparison to other studies, or an extension of the already existing research, complicated. Comparisons are often distorted, because results rely on different, not well defined, or even unknown boundary conditions. The purpose of this research is to develop a standardized analysis method for planetary surfaces, which is adaptable to several research topics. The method provides a consistent quality of results. This also includes achieving reliable and comparable results and reducing the time and effort of conducting such studies. A standardized analysis method is provided by automated analysis tools that focus on statistical parameters. Specific key parameters and boundary conditions are defined for the tool application. The analysis relies on a database in which all key parameters are stored. These databases can be easily updated and adapted to various research questions. This increases the flexibility, reproducibility, and comparability of the research. However, the quality of the database and reliability of definitions directly influence the results. To ensure a high quality of results, the rules and definitions need to be well defined and based on previously conducted case studies. The tools then produce parameters, which are obtained by defined geostatistical techniques (measurements, calculations, classifications). The idea of an automated statistical analysis is tested to proof benefits but also potential problems of this method. In this study, I adapt automated tools for floor-fractured craters (FFCs) on Mars. These impact craters show a variety of surface features, occurring in different Martian environments, and having different fracturing origins. They provide a complex morphological and geological field of application. 433 FFCs are classified by the analysis tools due to their fracturing process. Spatial data, environmental context, and crater interior data are analyzed to distinguish between the processes involved in floor fracturing. Related geologic processes, such as glacial and fluvial activity, are too similar to be separately classified by the automated tools. Glacial and fluvial fracturing processes are merged together for the classification. The automated tools provide probability values for each origin model. To guarantee the quality and reliability of the results, classification tools need to achieve an origin probability above 50 %. This analysis method shows that 15 % of the FFCs are fractured by intrusive volcanism, 20 % by tectonic activity, and 43 % by water & ice related processes. In total, 75 % of the FFCs are classified to an origin type. This can be explained by a combination of origin models, superposition or erosion of key parameters, or an unknown fracturing model. Those features have to be manually analyzed in detail. Another possibility would be the improvement of key parameters and rules for the classification. This research shows that it is possible to conduct an automated statistical analysis of morphologic and geologic features based on analysis tools. Analysis tools provide additional information to the user and are therefore considered assistance systems. N2 - Planetenforschung umfasst oft zeitintensive Projekte, bei denen Expertise und Erfahrung eine wesentliche Rolle spielen. Auf Grund äusserst komplexer und sich selten wiederholender Forschungsfragen sind Annahmen, Definitionen und Regeln zur Lösung dieser Fragen nicht leicht nachvollziehbar oder aber nicht eindeutig dokumentiert. Ein Vergleich der Ergebnisse unterschiedlicher Forscher zum selben Thema oder eine Erweiterung der Forschungsfrage macht dies somit nur schwer möglich. Vergleiche liefern oftmals verzerrte Ergebnisse, da die Ausgangslage und Randbedingungen unterschiedlich definiert worden sind. Das Ziel dieser Arbeit ist es eine Standardmethode zur Oberflächenanalyse zu entwickeln, die auf zahlreiche Untersuchungsfragen angewandt werden kann. Eine gleichbleibende Qualität der Ergebnisse muss durch diese Methode gewährleistet sein. Ein weiteres Ziel ist es, dass diese Methode ohne Vorwissen und Expertise angewandt werden kann und die Ergebnisse in kurzer Zeit vorliegen. Ausserdem müssen die Ergebnisse vergleichbar und nachvollziehbar sein. Automatisch operierende Analysewerkzeuge können die zahlreichen Anforderungen erfüllen und als Standardmethode dienen. Statistische Ergebnisse werden durch diese Methode erzielt. Die Werkzeuge basieren auf vordefinierten, geowissenschaftlichen Techniken und umfassen Messungen, Berechnungen und Klassifikationen der zu untersuchenden Oberflächenstrukturen. Für die Anwendung dieser Werkzeuge müssen Schlüsselstrukturen und Randbedingungen definiert werden. Des Weiteren benötigen die Werkzeuge eine Datenbank, in der alle Oberflächenstrukturen, aber auch Informationen zu den Randbedingungen gespeichert sind. Es ist mit geringem Aufwand möglich, Datenbanken zu aktualisieren und sie auf verschiedenste Fragestellungen zu adaptieren. Diese Tatsache steigert die Flexibilität, Reproduzierbarkeit und auch Vergleichbarkeit der Untersuchung. Die vordefinierten Randbedingungen und die Qualität der Datenbank haben jedoch auch direkten Einfluss auf die Qualität der Ergebnisse. Um eine gleichbleibend hohe Qualität der Untersuchung zu gewährleisten muss sichergestellt werden, dass alle vordefinierten Bedingungen eindeutig sind und auf vorheriger Forschung basieren. Die automatisch operierenden Analysewerkzeuge müssen als mögliche Standardmethode getestet werden. Hierbei geht es darum Vorteile, aber auch Nachteile zu identifizieren und zu bewerten. In dieser Arbeit werden die Analysewerkzeuge auf einen bestimmten Einschlagskratertyp auf dem Mars angewandt. Krater mit zerbrochenen Kraterböden (Floor-Fractured Craters) sind in verschiedensten Regionen auf dem Mars zu finden, sie zeigen zahlreiche Oberflächenstrukturen und wurden durch unterschiedliche Prozesse geformt. All diese Fakten machen diesen Kratertyp zu einem interessanten und im geologischen und morphologischen Sinne sehr komplexen Anwendungsgebiet. 433 Krater sind durch die Werkzeuge analysiert und je nach Entstehungsprozess klassifiziert worden. Für diese Analyse sind Position der Krater, Art des Umfeldes und Strukturen im Kraterinneren ausschlaggebend. Die kombinierten Informationen geben somit Auskunft über die Prozesse, welche zum Zerbrechen des Kraterbodens geführt haben. Die entwickelten Analysewerkzeuge können geologische Prozesse, die sehr ähnlich zueinander sind, von einander abhängig sind und zusätzlich auch dieselben Oberflächenstrukturen formen, nicht eindeutig unterscheiden. Aus diesem Grund sind fluviale und glaziale Entstehungsprozesse für den untersuchten Kratertyp zusammengefasst. Die Analysewerkzeuge liefern Wahrscheinlichkeitswerte für drei mögliche Entstehungsarten. Um die Qualität der Ergebnisse zu verbessern muss eine Wahrscheinlichkeit über 50 % erreicht werden. Die Werkzeuge zeigen, dass 15 % der Krater durch Vulkanismus, 20 % durch Tektonik und 43 % durch Wasser- und Eis-bedingte Prozesse gebildet wurden. Insgesamt kann für 75 % des untersuchten Kratertyps ein potentieller Entstehungsprozess zugeordnet werden. Für 25 % der Krater ist eine Klassifizierung nicht möglich. Dies kann durch eine Kombination von geologischen Prozessen, einer Überprägung von wichtigen Schlüsselstrukturen, oder eines bisher nicht berücksichtigten Prozesses erklärt werden. Zusammenfassend ist zu sagen, dass es möglich ist planetare Oberflächenstrukturen quantitativ durch automatisch operierende Analysewerkzeuge zu erfassen und hinsichtlich einer definierten Fragestellung zu klassifizieren. Zusätzliche Informationen können durch die entwickelten Werkzeuge erhalten werden, daher sind sie als Assistenzsystem zu betrachten. KW - Datenbank KW - Automatisierung KW - Klassifizierung KW - geologische Prozesse KW - Geomorphologie KW - database KW - automation KW - classification KW - geological processes KW - geomorphology Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-72104 ER - TY - THES A1 - Jamil, Abdlhamed T1 - Fernerkundung und GIS zur Erfassung, Modellierung und Visualisierung orientalischer Stadtstrukturen : das Beispiel Sanaa (Jemen) T1 - Acquisition, modelling and visualisation of oriental city structures with remote sensing and GIS : the case of Sanaa (Yemen) N2 - Gegenstand dieser Arbeit ist die Konzeption, Entwicklung und exemplarische Implementierung eines generischen Verfahrens zur Erfassung, Verarbeitung, Auswertung und kartographischen Visualisierung urbaner Strukturen im altweltlichen Trockengürtel mittels hochauflösender operationeller Fernerkundungsdaten. Das Verfahren wird am Beispiel der jemenitischen Hauptstadt Sanaa einer Vertreterin des Typus der Orientalischen Stadt angewandt und evaluiert. Das zu entwickelnde Verfahren soll auf Standardverfahren und Systemen der raumbezogenen Informationsverarbeitung basieren und in seinen wesentlichen Prozessschritten automatisiert werden können. Daten von hochauflösenden operationellen Fernerkundungssystemen (wie z.B. QuickBird, Ikonos u. a.) erlauben die Erkennung und Kartierung urbaner Objekte, wie Gebäude, Straßen und sogar Autos. Die mit ihnen erstellten Karten und den daraus gewonnenen Informationen können zur Erfassung von Urbanisierungsprozessen (Stadt- und Bevölkerungswachstum) herangezogen werden. Sie werden auch zur Generierung von 3D-Stadtmodellen genutzt. Diese dienen z.B. der Visualisierung für touristische Anwendungen, für die Stadtplanung, für Lärmanalysen oder für die Standortplanung von Mobilfunkantennen. Bei dem in dieser Arbeit erzeugten 3D-Visualisierung wurden jedoch keine Gebäudedetails erfasst. Entscheidend war vielmehr die Wiedergabe der Siedlungsstruktur, die im Vorhandensein und in der Anordnung der Gebäude liegt. In dieser Arbeit wurden Daten des Satellitensensors Quickbird von 2005 verwendet. Sie zeigen einen Ausschnitt der Stadt Sanaa in Jemen. Die Fernerkundungsdaten wurden durch andere Daten, u.a. auch Geländedaten, ergänzt und verifiziert. Das ausgearbeitete Verfahren besteht aus der Klassifikation der Satellitenbild-aufnahme, die u.a. pixelbezogen und für jede Klasse einzeln (pixelbezogene Klassifikation auf Klassenebene) durchgeführt wurde. Zusätzlich fand eine visuelle Interpretation der Satellitenbildaufnahme statt, bei der einzelne Flächen und die Straßen digitalisiert und die Objekte mit Symbolen gekennzeichnet wurden. Die aus beiden Verfahren erstellten Stadtkarten wurden zu einer fusioniert. Durch die Kombination der Ergebnisse werden die Vorteile beider Karten in einer vereint und ihre jeweiligen Schwächen beseitigt bzw. minimiert. Die digitale Erfassung der Konturlinien auf der Orthophotomap von Sanaa erlaubte die Erstellung eines Digitalen Geländemodells, das der dreidimensionalen Darstellung des Altstadtbereichs von Sanaa diente. Die 3D-Visualisierung wurde sowohl von den pixelbezogenen Klassifikationsergebnissen auf Klassenebene als auch von der digitalen Erfassung der Objekte erstellt. Die Ergebnisse beider Visualisierungen wurden im Anschluss in einer Stadtkarte vereint. Bei allen Klassifikationsverfahren wurden die asphaltierten Straßen, die Vegetation und einzeln stehende Gebäude sehr gut erfasst. Die Klassifikation der Altstadt gestaltete sich aufgrund der dort für die Klassifikation herrschenden ungünstigen Bedingungen am problematischsten. Die insgesamt besten Ergebnisse mit den höchsten Genauigkeitswerten wurden bei der pixelbezogenen Klassifikation auf Klassenebene erzielt. Dadurch, dass jede Klasse einzeln klassifiziert wurde, konnte die zu einer Klasse gehörende Fläche besser erfasst und nachbearbeitet werden. Die Datenmenge wurde reduziert, die Bearbeitungszeit somit kürzer und die Speicherkapazität geringer. Die Auswertung bzw. visuelle Validierung der pixel-bezogenen Klassifikationsergebnisse auf Klassenebene mit dem Originalsatelliten-bild gestaltete sich einfacher und erfolgte genauer als bei den anderen durch-geführten Klassifikationsverfahren. Außerdem war es durch die alleinige Erfassung der Klasse Gebäude möglich, eine 3D-Visualisierung zu erzeugen. Bei einem Vergleich der erstellten Stadtkarten ergibt sich, dass die durch die visuelle Interpretation erstellte Karte mehr Informationen enthält. Die von den pixelbezogenen Klassifikationsergebnissen auf Klassenebene erstellte Karte ist aber weniger arbeits- und zeitaufwendig zu erzeugen. Zudem arbeitet sie die Struktur einer orientalischen Stadt mit den wesentlichen Merkmalen besser heraus. Durch die auf Basis der 2D-Stadtkarten erstellte 3D-Visualisierung wird ein anderer räumlicher Eindruck vermittelt und bestimmte Elemente einer orientalischen Stadt deutlich gemacht. Dazu zählen die sich in der Altstadt befindenden Sackgassen und die ehemalige Stadtmauer. Auch die für Sanaa typischen Hochhäuser werden in der 3D-Visualisierung erkannt. Insgesamt wurde in der Arbeit ein generisches Verfahren entwickelt, dass mit geringen Modifikationen auch auf andere städtische Räume des Typus orientalische Stadt angewendet werden kann. N2 - This study aims at the development and implementation of a generic procedure for the acquisition, processing, analysis and cartographic visualisation of urban space in arid zone cities based on operational remote sensing imagery. As a proof of concept the Yemeni capital Sanaa has been selected as a use case. The workflow developed is based on standard procedures and systems of spatial information processing and allows for subsequent automation oft its essential processes. Today, high-resolution remote sensing data from operational satellite systems (such as QuickBird, Ikonos etc) facilitate the recognition and mapping of urban objects such as buildings, streets and even cars which, in the past could only be acquired by non-operational aerial photography. The satellite imagery can be used to generate maps and even 3D-representation of the urban space. Both maps and 3D-visualisations can be used for up-to-date land use mapping, zoning and urban planning purposes etc. The 3D-visualisation provides a deeper understanding of urban structures by integrating building height into the analysis. For this study remote sensing data of the Quickbird satellite data of 2005 were used. They show a section of the city of Sanaa in Yemen. The remote sensing data were supplemented and verified by other data, including terrain data. The image data are then subjected to thorough digital image. This procedure consists of a pixel-oriented classification of the satellite image acquisition at class level. In addition, a visual interpretation of the satellite image has been undertaken to identify and label individual objects (areas, surfaces, streets) etc. which were subsequently digitised. The town maps created in both procedures were merged to one. Through this combination of the results, the advantages of both maps are brought together and their respective weaknesses are eliminated or minimized. The digital collection of the contour lines on the orthophoto map of Sanaa allowed for the creation of a digital terrain model, which was used for the three-dimensional representation of Sanaa's historic district. The 3D-visualisation was created from the classification results as well as from the digital collection of the objects and the results of both visualisations were combined in a city map. In all classification procedures, paved roads, vegetation and single buildings were detected very well. The best overall results with the highest accuracy values achieved in the pixel-oriented classification at class level. Because each class has been classified separately, size belonging to that class can be better understood and optimised. The amount of data could be reduced, thus requiring less memory and resulting in a shorter processing time. The evaluation and validation of the pixel-oriented visual classification results at class level with the original satellite imagery was designed more simply and more accurately than other classification methods implemented. It was also possible by the separate recording of the class building to create a 3D-visualisation. A comparison of the maps created found that the map created from visual interpretation contains more information. The map based on pixel-oriented classification results at class level proved to be less labor- and time-consuming, and the structure of an oriental city with the main features will be worked out better. The 2D-maps and the 3D-visualisation provide a different spatial impression, and certain elements of an oriental city clearly detectable. These include the characteristic dead ends in the old town and the former city wall. The typical high-rise houses of Sanaa are detected in the 3D-visualisation. This work developed a generic procedure to detect, analyse and visualise urban structures in arid zone environments. The city of Sanaa served as a proof of concept. The results show that the workflow developed is instrumental in detecting typical structures of oriental cities. The results achieved in the case study Sanaa prove that the process can be adapted to the investigation of other arid zone cities in the Middle East with minor modifications. KW - Fernerkundung KW - 3D-Visualisierung KW - Klassifikation KW - 2D-Stadtmodell KW - orientalische Stadt KW - remote sensing KW - 3D visualization KW - classification KW - 2D city model KW - oriental city Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50200 ER - TY - GEN A1 - Murawski, Aline A1 - Bürger, Gerd A1 - Vorogushyn, Sergiy A1 - Merz, Bruno T1 - Can local climate variability be explained by weather patterns? BT - a multi-station evaluation for the Rhine basin T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - To understand past flood changes in the Rhine catchment and in particular the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. This approach assumes a strong link between weather patterns and local climate, and sufficient GCM skill in reproducing weather pattern climatology. These presuppositions are unprecedentedly evaluated here using 111 years of daily climate data from 490 stations in the Rhine basin and comprehensively testing the number of classification parameters and GCM weather pattern characteristics. A classification based on a combination of mean sea level pressure, temperature, and humidity from the ERA20C reanalysis of atmospheric fields over central Europe with 40 weather types was found to be the most appropriate for stratifying six local climate variables. The corresponding skill is quite diverse though, ranging from good for radiation to poor for precipitation. Especially for the latter it was apparent that pressure fields alone cannot sufficiently stratify local variability. To test the skill of the latest generation of GCMs from the CMIP5 ensemble in reproducing the frequency, seasonality, and persistence of the derived weather patterns, output from 15 GCMs is evaluated. Most GCMs are able to capture these characteristics well, but some models showed consistent deviations in all three evaluation criteria and should be excluded from further attribution analysis. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 525 KW - athmospheric circulation patterns KW - stochastic rainfall model KW - within-type variability KW - river Rhine KW - precipitation KW - temperature KW - trends KW - classification KW - Europe KW - scenarios Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410155 SN - 1866-8372 IS - 525 ER - TY - THES A1 - Ohrnberger, Matthias T1 - Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, Java, Indonesia N2 - Aufgrund seiner nahezu kontinuierlichen eruptiven Aktivität zählt der Merapi zu den gefährlichsten Vulkanen der Welt. Der Merapi befindet sich im Zentralteil der dicht bevölkerten Insel Java (Indonesien). Selbst kleinere Ausbrüche des Merapi stellen deswegen eine große Gefahr für die ansässige Bevölkerung in der Umgebung des Vulkans dar. Die am Merapi beobachtete enge Korrelation zwischen seismischer und vulkanischer Aktivität erlaubt es, mit Hilfe der Überwachung der seismischen Aktivität Veränderungen des Aktivitätszustandes des Merapi zu erkennen. Ein System zur automatischen Detektion und Klassifizierung seismischer Ereignisse liefert einen wichtigen Beitrag für die schnelle Analyse der seismischen Aktivität. Im Falle eines bevorstehenden Ausbruchszyklus bedeutet dies ein wichtiges Hilfsmittel für die vor Ort ansässigen Wissenschaftler. In der vorliegenden Arbeit wird ein Mustererkennungsverfahren verwendet, um die Detektion und Klassifizierung seismischer Signale vulkanischen Urprunges aus den kontinuierlich aufgezeichneten Daten in Echtzeit zu bewerkstelligen. Der hier verwendete A nsatz der hidden Markov Modelle (HMM) wird motiviert durch die große Ähnlichkeit von seismischen Signalen vulkanischen Ursprunges und Sprachaufzeichnungen und den großen Erfolg, den HMM-basierte Erkennungssysteme in der automatischen Spracherkennung erlangt haben. Für eine erfolgreiche Implementierung eines Mustererkennungssytems ist es notwendig, eine geeignete Parametrisierung der Rohdaten vorzunehmen. Basierend auf den Erfahrungswerten seismologischer Observatorien wird ein Vorgehen zur Parametrisierung des seismischen Wellenfeldes auf Grundlage von robusten Analyseverfahren vorgeschlagen. Die Wellenfeldparameter werden pro Zeitschritt in einen reell-wertigen Mustervektor zusammengefasst. Die aus diesen Mustervektoren gebildete Zeitreihe ist dann Gegenstand des HMM-basierten Erkennungssystems. Um diskrete hidden Markov Modelle (DHMM) verwenden zu können, werden die Mustervektoren durch eine lineare Transformation und nachgeschaltete Vektor Quantisierung in eine diskrete Symbolsequenz überführt. Als Klassifikator kommt eine Maximum-Likelihood Testfunktion zwischen dieser Sequenz und den, in einem überwachten Lernverfahren trainierten, DHMMs zum Einsatz. Die am Merapi kontinuierlich aufgezeichneten seismischen Daten im Zeitraum vom 01.07. und 05.07.1998 sind besonders für einen Test dieses Klassifikationssystems geeignet. In dieser Zeit zeigte der Merapi einen rapiden Anstieg der Seismizität kurz bevor dem Auftreten zweier Eruptionen am 10.07. und 19.07.1998. Drei der bekannten, vom Vulkanologischen Dienst in Indonesien beschriebenen, seimischen Signalklassen konnten in diesem Zeitraum beobachtet werden. Es handelt sich hierbei um flache vulkanisch-tektonische Beben (VTB, h < 2.5 km), um sogenannte MP-Ereignisse, die in direktem Zusammenhang mit dem Wachstum des aktiven Lavadoms gebracht werden, und um seismische Ereignisse, die durch Gesteinslawinen erzeugt werden (lokaler Name: Guguran). Die spezielle Geometrie des digitalen seismischen Netzwerkes am Merapi besteht aus einer Kombination von drei Mini-Arrays an den Flanken des Merapi. Für die Parametrisierung des Wellenfeldes werden deswegen seismische Array-Verfahren eingesetzt. Die individuellen Wellenfeld Parameter wurden hinsichtlich ihrer Relevanz für den Klassifikationsprozess detailliert analysiert. Für jede der drei Signalklassen wurde ein Satz von DHMMs trainiert. Zusätzlich wurden als Ausschlussklassen noch zwei Gruppen von Noise-Modellen unterschieden. Insgesamt konnte mit diesem Ansatz eine Erkennungsrate von 67 % erreicht werden. Im Mittel erzeugte das automatische Klassifizierungssystem 41 Fehlalarme pro Tag und Klasse. Die Güte der Klassifikationsergebnisse zeigt starke Variationen zwischen den individuellen Signalklassen. Flache vulkanisch-tektonische Beben (VTB) zeigen sehr ausgeprägte Wellenfeldeigenschaften und, zumindest im untersuchten Zeitraum, sehr stabile Zeitmuster der individuellen Wellenfeldparameter. Das DHMM-basierte Klassifizierungssystem erlaubte für diesen Ereignistyp nahezu 89% richtige Entscheidungen und erzeugte im Mittel 2 Fehlalarme pro Tag. Ereignisse der Klassen MP und Guguran sind mit dem automatischen System schwieriger zu erkennen. 64% aller MP-Ereignisse und 74% aller Guguran-Ereignisse wurden korrekt erkannt. Im Mittel kam es bei MP-Ereignissen zu 87 Fehlalarmen und bei Guguran Ereignissen zu 33 Fehlalarmen pro Tag. Eine Vielzahl der Fehlalarme und nicht detektierten Ereignisse entstehen jedoch durch eine Verwechslung dieser beiden Signalklassen im automatischen Erkennnungsprozess. Dieses Ergebnis konnte aufgrund der ähnlichen Wellenfeldeigenschaften beider Signalklassen erklärt werden, deren Ursache vermutlich in den bekannt starken Einflüssen des Mediums entlang des Wellenausbreitungsweges in vulkanischen Gebieten liegen. Insgesamt ist die Erkennungsleistung des entwickelten automatischen Klassifizierungssystems als sehr vielversprechend einzustufen. Im Gegensatz zu Standardverfahren, bei denen in der Seismologie üblicherweise nur der Startzeitpunkt eines seismischen Ereignisses detektiert wird, werden in dem untersuchten Verfahren seismische Ereignisse in ihrer Gesamtheit erfasst und zudem im selben Schritt bereits klassifiziert. N2 - Merapi volcano is one of the most active and dangerous volcanoes of the earth. Located in central part of Java island (Indonesia), even a moderate eruption of Merapi poses a high risk to the highly populated area. Due to the close relationship between the volcanic unrest and the occurrence of seismic events at Mt. Merapi, the monitoring of Merapi's seismicity plays an important role for recognizing major changes in the volcanic activity. An automatic seismic event detection and classification system, which is capable to characterize the actual seismic activity in near real-time, is an important tool which allows the scientists in charge to take immediate decisions during a volcanic crisis. In order to accomplish the task of detecting and classifying volcano-seismic signals automatically in the continuous data streams, a pattern recognition approach has been used. It is based on the method of hidden Markov models (HMM), a technique, which has proven to provide high recognition rates at high confidence levels in classification tasks of similar complexity (e.g. speech recognition). Any pattern recognition system relies on the appropriate representation of the input data in order to allow a reasonable class-decision by means of a mathematical test function. Based on the experiences from seismological observatory practice, a parametrization scheme of the seismic waveform data is derived using robust seismological analysis techniques. The wavefield parameters are summarized into a real-valued feature vector per time step. The time series of this feature vector build the basis for the HMM-based classification system. In order to make use of discrete hidden Markov (DHMM) techniques, the feature vectors are further processed by applying a de-correlating and prewhitening transformation and additional vector quantization. The seismic wavefield is finally represented as a discrete symbol sequence with a finite alphabet. This sequence is subject to a maximum likelihood test against the discrete hidden Markov models, learned from a representative set of training sequences for each seismic event type of interest. A time period from July, 1st to July, 5th, 1998 of rapidly increasing seismic activity prior to the eruptive cycle between July, 10th and July, 19th, 1998 at Merapi volcano is selected for evaluating the performance of this classification approach. Three distinct types of seismic events according to the established classification scheme of the Volcanological Survey of Indonesia (VSI) have been observed during this time period. Shallow volcano-tectonic events VTB (h < 2.5 km), very shallow dome-growth related seismic events MP (h < 1 km) and seismic signals connected to rockfall activity originating from the active lava dome, termed Guguran. The special configuration of the digital seismic station network at Merapi volcano, a combination of small-aperture array deployments surrounding Merapi's summit region, allows the use of array methods to parametrize the continuously recorded seismic wavefield. The individual signal parameters are analyzed to determine their relevance for the discrimination of seismic event classes. For each of the three observed event types a set of DHMMs has been trained using a selected set of seismic events with varying signal to noise ratios and signal durations. Additionally, two sets of discrete hidden Markov models have been derived for the seismic noise, incorporating the fact, that the wavefield properties of the ambient vibrations differ considerably during working hours and night time. A total recognition accuracy of 67% is obtained. The mean false alarm (FA) rate can be given by 41 FA/class/day. However, variations in the recognition capabilities for the individual seismic event classes are significant. Shallow volcano-tectonic signals (VTB) show very distinct wavefield properties and (at least in the selected time period) a stable time pattern of wavefield attributes. The DHMM-based classification performs therefore best for VTB-type events, with almost 89% recognition accuracy and 2 FA/day. Seismic signals of the MP- and Guguran-classes are more difficult to detect and classify. Around 64% of MP-events and 74% of Guguran signals are recognized correctly. The average false alarm rate for MP-events is 87 FA/day, whereas for Guguran signals 33 FA/day are obtained. However, the majority of missed events and false alarms for both MP and Guguran events are due to confusion errors between these two event classes in the recognition process. The confusion of MP and Guguran events is interpreted as being a consequence of the selected parametrization approach for the continuous seismic data streams. The observed patterns of the analyzed wavefield attributes for MP and Guguran events show a significant amount of similarity, thus providing not sufficient discriminative information for the numerical classification. The similarity of wavefield parameters obtained for seismic events of MP and Guguran type reflect the commonly observed dominance of path effects on the seismic wave propagation in volcanic environments. The recognition rates obtained for the five-day period of increasing seismicity show, that the presented DHMM-based automatic classification system is a promising approach for the difficult task of classifying volcano-seismic signals. Compared to standard signal detection algorithms, the most significant advantage of the discussed technique is, that the entire seismogram is detected and classified in a single step. KW - volcanic seismology KW - Merapi KW - monitoring KW - classification KW - pattern recognition KW - Hidden Markov Model (HMM) KW - Seismic Array Methods Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000028 ER - TY - GEN A1 - Rawel, Harshadrai Manilal A1 - Huschek, Gerd A1 - Sagu Tchewonpi, Sorel A1 - Homann, Thomas T1 - Cocoa Bean Proteins BT - Characterization, Changes and Modifications due to Ripening and Post-Harvest Processing T2 - Postprints der Universität Potsdam: Mathematisch-Naturwissenschaftliche Reihe N2 - The protein fractions of cocoa have been implicated influencing both the bioactive potential and sensory properties of cocoa and cocoa products. The objective of the present review is to show the impact of different stages of cultivation and processing with regard to the changes induced in the protein fractions. Special focus has been laid on the major seed storage proteins throughout the different stages of processing. The study starts with classical introduction of the extraction and the characterization methods used, while addressing classification approaches of cocoa proteins evolved during the timeline. The changes in protein composition during ripening and maturation of cocoa seeds, together with the possible modifications during the post-harvest processing (fermentation, drying, and roasting), have been documented. Finally, the bioactive potential arising directly or indirectly from cocoa proteins has been elucidated. The “state of the art” suggests that exploration of other potentially bioactive components in cocoa needs to be undertaken, while considering the complexity of reaction products occurring during the roasting phase of the post-harvest processing. Finally, the utilization of partially processed cocoa beans (e.g., fermented, conciliatory thermal treatment) can be recommended, providing a large reservoir of bioactive potentials arising from the protein components that could be instrumented in functionalizing foods. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 681 KW - cocoa processing KW - cocoa proteins KW - classification KW - extraction and characterization methods KW - fermentation-related enzymes KW - bioactive peptides KW - heath potentials KW - protein–phenol interactions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425953 SN - 1866-8372 IS - 681 ER - TY - BOOK A1 - Richter, Angelika T1 - Klassifikationen von Computerspielen T1 - Classifications of computer games N2 - Klassifikationen von Computerspielen widmet sich den Begriffen, mit denen Computerspiele zu Klassifikationszwecken versehen werden. Eine repräsentative Auswahl an derartigen Klassifikationsmodellen, die die Arbeiten von Designern, Journalisten, Pädagogen, Laien und expliziten Computerspielforschern abdeckt, wird vorgestellt und hinsichtlich ihrer Anwendbarkeit zur eindeutigen Bestimmung konkreter Spiele bewertet. Dabei zeigen sich zwei grundlegend verschiedene Herangehensweisen an die Problematik: „Kategorisierungen“ stellen feste Kategorien auf, in die einzelne Spiel eindeutig einsortiert werden sollen, während „Typologien“ die einzelnen Elemente von Spielen untersuchen und klassifizieren. Beide Ansätze werden analysiert und ihre jeweiligen Vor- und Nachteile aufgezeigt. Da offensichtlich wird, dass die Klassifikation von Computerspielen in bedeutendem Maße vom jeweiligen zugrunde liegenden Verständnis davon, was ein „Computerspiel“ sei, abhängt, ist der Untersuchung der Klassifikationsmodelle eine Betrachtung dieser problematischen Begriffsdefinition vorangestellt, die beispielhaft an vier ausgewählten Aspekten durchgeführt wird. N2 - Classifications of computer games is concerned with the terms that are used to label computer games for classificatory purposes. A representative selection of such classification models, that covers the works of designers, journalists, pedagogues, laymen and explicit computer game researchers, are introduced and assessed with regard to their ability to classify specific games unambiguously. Two essentially different approaches to this problem are identified: “categorizations” establish rigid categories to which single games are to be assigned unambiguously, while “typologies” examine and classify single elements of games and not games as a whole. Both methods are analysed and their advantages and disadvantages are shown. As it becomes obvious that classifying computer games is highly dependent on the respective basic understanding of what a computer game is, the study of the classification models is preceded by an overview which discusses four chosen aspects as examples of this problematic definition. T3 - DIGAREC Series - 05 KW - Computerspiele KW - Videospiele KW - Klassifikation KW - Typologie KW - Ludologie KW - computer games KW - video games KW - classification KW - typology KW - ludology Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-43901 SN - 978-3-86956-076-2 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - THES A1 - Richter, Rico T1 - Concepts and techniques for processing and rendering of massive 3D point clouds T1 - Konzepte und Techniken für die Verarbeitung und das Rendering von Massiven 3D-Punktwolken N2 - Remote sensing technology, such as airborne, mobile, or terrestrial laser scanning, and photogrammetric techniques, are fundamental approaches for efficient, automatic creation of digital representations of spatial environments. For example, they allow us to generate 3D point clouds of landscapes, cities, infrastructure networks, and sites. As essential and universal category of geodata, 3D point clouds are used and processed by a growing number of applications, services, and systems such as in the domains of urban planning, landscape architecture, environmental monitoring, disaster management, virtual geographic environments as well as for spatial analysis and simulation. While the acquisition processes for 3D point clouds become more and more reliable and widely-used, applications and systems are faced with more and more 3D point cloud data. In addition, 3D point clouds, by their very nature, are raw data, i.e., they do not contain any structural or semantics information. Many processing strategies common to GIS such as deriving polygon-based 3D models generally do not scale for billions of points. GIS typically reduce data density and precision of 3D point clouds to cope with the sheer amount of data, but that results in a significant loss of valuable information at the same time. This thesis proposes concepts and techniques designed to efficiently store and process massive 3D point clouds. To this end, object-class segmentation approaches are presented to attribute semantics to 3D point clouds, used, for example, to identify building, vegetation, and ground structures and, thus, to enable processing, analyzing, and visualizing 3D point clouds in a more effective and efficient way. Similarly, change detection and updating strategies for 3D point clouds are introduced that allow for reducing storage requirements and incrementally updating 3D point cloud databases. In addition, this thesis presents out-of-core, real-time rendering techniques used to interactively explore 3D point clouds and related analysis results. All techniques have been implemented based on specialized spatial data structures, out-of-core algorithms, and GPU-based processing schemas to cope with massive 3D point clouds having billions of points. All proposed techniques have been evaluated and demonstrated their applicability to the field of geospatial applications and systems, in particular for tasks such as classification, processing, and visualization. Case studies for 3D point clouds of entire cities with up to 80 billion points show that the presented approaches open up new ways to manage and apply large-scale, dense, and time-variant 3D point clouds as required by a rapidly growing number of applications and systems. N2 - Fernerkundungstechnologien wie luftgestütztes, mobiles oder terrestrisches Laserscanning und photogrammetrische Techniken sind grundlegende Ansätze für die effiziente, automatische Erstellung von digitalen Repräsentationen räumlicher Umgebungen. Sie ermöglichen uns zum Beispiel die Erzeugung von 3D-Punktwolken für Landschaften, Städte, Infrastrukturnetze und Standorte. 3D-Punktwolken werden als wesentliche und universelle Kategorie von Geodaten von einer wachsenden Anzahl an Anwendungen, Diensten und Systemen genutzt und verarbeitet, zum Beispiel in den Bereichen Stadtplanung, Landschaftsarchitektur, Umweltüberwachung, Katastrophenmanagement, virtuelle geographische Umgebungen sowie zur räumlichen Analyse und Simulation. Da die Erfassungsprozesse für 3D-Punktwolken immer zuverlässiger und verbreiteter werden, sehen sich Anwendungen und Systeme mit immer größeren 3D-Punktwolken-Daten konfrontiert. Darüber hinaus enthalten 3D-Punktwolken als Rohdaten von ihrer Art her keine strukturellen oder semantischen Informationen. Viele GIS-übliche Verarbeitungsstrategien, wie die Ableitung polygonaler 3D-Modelle, skalieren in der Regel nicht für Milliarden von Punkten. GIS reduzieren typischerweise die Datendichte und Genauigkeit von 3D-Punktwolken, um mit der immensen Datenmenge umgehen zu können, was aber zugleich zu einem signifikanten Verlust wertvoller Informationen führt. Diese Arbeit präsentiert Konzepte und Techniken, die entwickelt wurden, um massive 3D-Punktwolken effizient zu speichern und zu verarbeiten. Hierzu werden Ansätze für die Objektklassen-Segmentierung vorgestellt, um 3D-Punktwolken mit Semantik anzureichern; so lassen sich beispielsweise Gebäude-, Vegetations- und Bodenstrukturen identifizieren, wodurch die Verarbeitung, Analyse und Visualisierung von 3D-Punktwolken effektiver und effizienter durchführbar werden. Ebenso werden Änderungserkennungs- und Aktualisierungsstrategien für 3D-Punktwolken vorgestellt, mit denen Speicheranforderungen reduziert und Datenbanken für 3D-Punktwolken inkrementell aktualisiert werden können. Des Weiteren beschreibt diese Arbeit Out-of-Core Echtzeit-Rendering-Techniken zur interaktiven Exploration von 3D-Punktwolken und zugehöriger Analyseergebnisse. Alle Techniken wurden mit Hilfe spezialisierter räumlicher Datenstrukturen, Out-of-Core-Algorithmen und GPU-basierter Verarbeitungs-schemata implementiert, um massiven 3D-Punktwolken mit Milliarden von Punkten gerecht werden zu können. Alle vorgestellten Techniken wurden evaluiert und die Anwendbarkeit für Anwendungen und Systeme, die mit raumbezogenen Daten arbeiten, wurde insbesondere für Aufgaben wie Klassifizierung, Verarbeitung und Visualisierung demonstriert. Fallstudien für 3D-Punktwolken von ganzen Städten mit bis zu 80 Milliarden Punkten zeigen, dass die vorgestellten Ansätze neue Wege zur Verwaltung und Verwendung von großflächigen, dichten und zeitvarianten 3D-Punktwolken eröffnen, die von einer wachsenden Anzahl an Anwendungen und Systemen benötigt werden. KW - 3D point clouds KW - 3D-Punktwolken KW - real-time rendering KW - Echtzeit-Rendering KW - 3D visualization KW - 3D-Visualisierung KW - classification KW - Klassifizierung KW - change detection KW - Veränderungsanalyse KW - LiDAR KW - LiDAR KW - remote sensing KW - Fernerkundung KW - mobile mapping KW - Mobile-Mapping KW - Big Data KW - Big Data KW - GPU KW - GPU KW - laserscanning KW - Laserscanning Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423304 ER - TY - THES A1 - Veh, Georg T1 - Outburst floods from moraine-dammed lakes in the Himalayas T1 - Ausbruchsfluten von moränen-gestauten Seen im Himalaya BT - detection, frequency, and hazard BT - Erkennung, Häufigkeit, und Gefährdung N2 - The Himalayas are a region that is most dependent, but also frequently prone to hazards from changing meltwater resources. This mountain belt hosts the highest mountain peaks on earth, has the largest reserve of ice outside the polar regions, and is home to a rapidly growing population in recent decades. One source of hazard has attracted scientific research in particular in the past two decades: glacial lake outburst floods (GLOFs) occurred rarely, but mostly with fatal and catastrophic consequences for downstream communities and infrastructure. Such GLOFs can suddenly release several million cubic meters of water from naturally impounded meltwater lakes. Glacial lakes have grown in number and size by ongoing glacial mass losses in the Himalayas. Theory holds that enhanced meltwater production may increase GLOF frequency, but has never been tested so far. The key challenge to test this notion are the high altitudes of >4000 m, at which lakes occur, making field work impractical. Moreover, flood waves can attenuate rapidly in mountain channels downstream, so that many GLOFs have likely gone unnoticed in past decades. Our knowledge on GLOFs is hence likely biased towards larger, destructive cases, which challenges a detailed quantification of their frequency and their response to atmospheric warming. Robustly quantifying the magnitude and frequency of GLOFs is essential for risk assessment and management along mountain rivers, not least to implement their return periods in building design codes. Motivated by this limited knowledge of GLOF frequency and hazard, I developed an algorithm that efficiently detects GLOFs from satellite images. In essence, this algorithm classifies land cover in 30 years (~1988–2017) of continuously recorded Landsat images over the Himalayas, and calculates likelihoods for rapidly shrinking water bodies in the stack of land cover images. I visually assessed such detected tell-tale sites for sediment fans in the river channel downstream, a second key diagnostic of GLOFs. Rigorous tests and validation with known cases from roughly 10% of the Himalayas suggested that this algorithm is robust against frequent image noise, and hence capable to identify previously unknown GLOFs. Extending the search radius to the entire Himalayan mountain range revealed some 22 newly detected GLOFs. I thus more than doubled the existing GLOF count from 16 previously known cases since 1988, and found a dominant cluster of GLOFs in the Central and Eastern Himalayas (Bhutan and Eastern Nepal), compared to the rarer affected ranges in the North. Yet, the total of 38 GLOFs showed no change in the annual frequency, so that the activity of GLOFs per unit glacial lake area has decreased in the past 30 years. I discussed possible drivers for this finding, but left a further attribution to distinct GLOF-triggering mechanisms open to future research. This updated GLOF frequency was the key input for assessing GLOF hazard for the entire Himalayan mountain belt and several subregions. I used standard definitions in flood hydrology, describing hazard as the annual exceedance probability of a given flood peak discharge [m3 s-1] or larger at the breach location. I coupled the empirical frequency of GLOFs per region to simulations of physically plausible peak discharges from all existing ~5,000 lakes in the Himalayas. Using an extreme-value model, I could hence calculate flood return periods. I found that the contemporary 100-year GLOF discharge (the flood level that is reached or exceeded on average once in 100 years) is 20,600+2,200/–2,300 m3 s-1 for the entire Himalayas. Given the spatial and temporal distribution of historic GLOFs, contemporary GLOF hazard is highest in the Eastern Himalayas, and lower for regions with rarer GLOF abundance. I also calculated GLOF hazard for some 9,500 overdeepenings, which could expose and fill with water, if all Himalayan glaciers have melted eventually. Assuming that the current GLOF rate remains unchanged, the 100-year GLOF discharge could double (41,700+5,500/–4,700 m3 s-1), while the regional GLOF hazard may increase largest in the Karakoram. To conclude, these three stages–from GLOF detection, to analysing their frequency and estimating regional GLOF hazard–provide a framework for modern GLOF hazard assessment. Given the rapidly growing population, infrastructure, and hydropower projects in the Himalayas, this thesis assists in quantifying the purely climate-driven contribution to hazard and risk from GLOFs. N2 - In kaum einer anderen Region treten Abhängigkeit, Nutzen und Gefährdung von Gletscher- und Schneeschmelze so deutlich zu Tage wie im Himalaya. Naturgefahren sind hier allgegenwärtig, wobei eine die Wissenschaftler in den vergangen zwei Jahrzehnten besonders beschäftigte: Ausbrüche von Gletscherseen traten in der Vergangenheit zwar selten, aber meist mit katastrophalen Konsequenzen für die darunterliegenden Berggemeinden auf. Gletscherseeausbrüche (englisches Akronym GLOFs – glacial lake outburst floods) beschreiben den plötzlichen Ausfluss von teils mehreren Millionen Kubikmetern Wasser aus natürlich gedämmten Schmelzwasserseen. Anhaltender Gletscherrückgang in vergangenen Jahrzehnten schuf mehrere tausend Hochgebirgsseen, mit ununterbrochenem Wachstum in Anzahl und Fläche, was den Schluss auf ein möglicherweise vermehrtes Auftreten von GLOFs nahelegte. Diese suggerierte Zunahme von GLOFs konnte jedoch bisher weder getestet noch bestätigt werden, vor allem weil Seen überwiegend jenseits von 4,000 m üNN entstehen, was Feldstudien dort erschwert. Unser Wissen über GLOFs ist daher möglicherweise zu größeren, schadensreichen Ereignissen verschoben, wodurch ihre aktuelle Frequenz, und letztlich auch ihr Zusammenhang mit dem Klimawandel, nur schwer quantifizierbar sind. Mit welcher Wiederkehrrate GLOFs auftreten ist nicht zuletzt entscheidend für Risikoanalyse und -management entlang von Flüssen. Um einer Unterschätzung der tatsächlichen GLOF-Aktivität entgegenzuwirken, entwickelte ich einen Algorithmus, der GLOFs automatisch aus Satellitenbildern detektiert. Der Algorithmus greift auf etwa 30 Jahre kontinuierlich aufgenommene Landsat-Bilder (~1988-2017) zu, und berechnet letztlich die Wahrscheinlichkeit, ob Wasserkörper rasch innerhalb dieser Bildzeitreihe geschrumpft sind. An solchen Stellen suchte ich nach Sedimentverlagerungen im Gerinne flussabwärts, was ein zweites Hauptkriterium für GLOFs ist. Tests und Validierung in etwa 10% des Himalayas bestätigten, dass die Methode robust gegenüber atmosphärischen Störeffekten ist. Mit dem Ziel bisher unbekannte GLOFs zu entdecken, wendete ich daher diesen Algorithmus auf den gesamten Himalaya an. Die Suche ergab 22 neu entdeckte GLOFs, was das bestehende Inventar von 16 bekannten GLOFs seit 1988 mehr als verdoppelte. Das aktualisierte räumliche Verbreitungsmuster bestätigte einmal mehr, dass GLOFs vermehrt im Zentral- und Osthimalaya (Bhutan und Ost-Nepal) auftraten, wohingegen im Norden deutlich weniger GLOFs stattfanden. Entgegen der häufigen Annahme stellte ich jedoch fest, dass die jährliche Häufigkeit von GLOFs in den letzten drei Jahrzehnten konstant blieb. Dadurch hat das Verhältnis von GLOFs pro Einheit See(-fläche) in diesem Zeitraum sogar abgenommen. Dieses räumlich aufgelöste GLOF-Inventar bot nun die Möglichkeit, das Gefährdungspotential durch GLOFs für den gesamten Himalaya und einzelne Regionen zu berechnen. Dafür verwendete ich die in der Hochwasseranalyse gebräuchliche Definition von Gefährdung, welche die jährliche Überschreitungswahrscheinlichkeit einer gewissen Abflussmenge, in diesem Fall des Spitzenabflusses [m3 s-1] am Dammbruch, beschreibt. Das GLOF-Inventar liefert demnach die zeitliche Wahrscheinlichkeit für das Auftreten von GLOFs, während Simulationen von möglichen Spitzenabflüssen für alle heute existierenden ~5,000 Seen im Himalaya die zu erwarteten Magnituden beisteuerten. Mit Extremwertstatistik lässt sich so die mittlere Wiederkehrzeit dieser Spitzenabflüsse errechnen. Ich fand heraus, dass der 100-jährliche Abfluss (die Flutmagnitude, die im Durchschnitt einmal in 100 Jahren erreicht oder überschritten wird) derzeit bei rund 20,600+2,200/–2,300 m³ s-1 für den gesamten Himalaya liegt. Entsprechend der heutigen räumlichen und zeitlichen Verteilung von GLOFs ist die Gefährdung im Osthimalaya am höchsten und in Regionen mit wenig dokumentierten GLOFs vergleichsweise niedrig. Für ein Szenario, in dem der gesamte Himalaya in Zukunft eisfrei sein könnte, errechnete ich zudem das Gefährdungspotential von ~9,500 Übertiefungen unterhalb der heutigen Gletschern, die sich nach deren Abschmelzen mit Wasser füllen könnten. Angenommen, dass die zukünftige GLOF-Rate der heutigen entspricht, könnte der 100-jährliche Abfluss sich mehr als verdoppeln (41,700+5,500/–4,700 m3 s-1), wobei der stärkste regionale Anstieg für den Karakorum zu erwarten wäre. Zusammenfassend formen diese drei Schritte–von der Detektion von GLOFs, über die Bestimmung derer Frequenz, bis zur regionalen Abschätzung von Spitzenabflüssen–das Grundgerüst, das ein moderner Ansatz zur Gefahrenabschätzung von GLOFs benötigt. Angesichts einer wachsenden Exposition von Bevölkerung, Infrastruktur und Wasserkraftanlagen liefert diese Arbeit einen entscheidenden Beitrag, den Anteil des Klimawandels in der Gefährdung und Risiko durch GLOFs zu quantifizieren. KW - GLOF KW - frequency KW - Landsat KW - satellite images KW - classification KW - magnitude KW - Himalaya KW - Karakoram KW - climate change KW - atmospheric warming KW - glacial lakes KW - glaciers KW - meltwater KW - natural hazard KW - GLOF KW - Gletscherseeasubruch KW - Häufigkeit KW - Landsat KW - Satellitenbilder KW - Klassifikation KW - Magnitude KW - Himalaya KW - Karakorum KW - Klimawandel KW - atmosphärische Erwärmung KW - Gletscherseen KW - Gletscher KW - Schmelzwasser KW - Naturgefahr Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436071 ER -