TY - GEN A1 - Frieler, Katja A1 - Levermann, Anders A1 - Elliott, J. A1 - Heinke, J. A1 - Arneth, A. A1 - Bierkens, M. F. P. A1 - Ciais, Philippe A1 - Clark, D. B. A1 - Deryng, D. A1 - Doell, P. A1 - Falloon, P. A1 - Fekete, B. A1 - Folberth, Christian A1 - Friend, A. D. A1 - Gellhorn, C. A1 - Gosling, S. N. A1 - Haddeland, I. A1 - Khabarov, N. A1 - Lomas, M. A1 - Masaki, Y. A1 - Nishina, K. A1 - Neumann, K. A1 - Oki, T. A1 - Pavlick, R. A1 - Ruane, A. C. A1 - Schmid, E. A1 - Schmitz, C. A1 - Stacke, T. A1 - Stehfest, E. A1 - Tang, Q. A1 - Wisser, D. A1 - Huber, V. A1 - Piontek, Franziska A1 - Warszawski, L. A1 - Schewe, Jacob A1 - Lotze-Campen, Hermann A1 - Schellnhuber, Hans Joachim T1 - A framework for the cross-sectoral integration of multi-model impact projections BT - land use decisions under climate impacts uncertainties T2 - Earth system dynamics N2 - Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 457 KW - global food demand KW - water availability KW - elevated CO2 KW - future KW - carbon KW - system KW - productivity KW - agriculture KW - emissions KW - scarcity Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407968 ER - TY - GEN A1 - Gallego-Llorente, Marcos A1 - Sarah, Connell A1 - Jones, Eppie R. A1 - Merrett, Deborah C. A1 - Jeon, Y. A1 - Eriksson, Anders A1 - Siska, Veronika A1 - Gamba, Cristina A1 - Meiklejohn, Christopher A1 - Beyer, Robert A1 - Jeon, Sungwon A1 - Cho, Yun Sung A1 - Hofreiter, Michael A1 - Bhak, Jong A1 - Manica, Andrea A1 - Pinhasi, Ron T1 - The genetics of an early Neolithic pastoralist from the Zagros, Iran T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding, ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting those of the Central Zagros were somewhat isolated from other populations of the Fertile Crescent. Runs of homozygosity are of a similar length to those from Neolithic farmers, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity between early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 952 KW - whole-genome association KW - ancient KW - domestication KW - agriculture KW - mountains KW - diffusion KW - migration KW - admixture KW - patterns KW - sequence KW - archaeology KW - biological anthropology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439355 SN - 1866-8372 IS - 952 ER - TY - GEN A1 - Heim, Olga A1 - Lorenz, Lukas A1 - Kramer-Schadt, Stephanie A1 - Jung, Kirsten A1 - Voigt, Christian C. A1 - Eccard, Jana T1 - Landscape and scale-dependent spatial niches of bats foraging above intensively used arable fields T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Introduction Bats are threatened by agricultural intensification, and although bat ecology in agricultural landscapes is in the focus of current research, the effects of interacting spatiotemporal factors on species-specific bat activity above farmland remain understudied. Our aim was to identify spatiotemporal factors and their interactions relevant for the activity of bat species above conventionally managed arable fields. Methods We repeatedly monitored relative bat activity above open arable fields in Germany using acoustic monitoring. We used site-related biotic and abiotic factors and landscape characteristics across five spatial scales, their combinations, and interactions to identify those factors which best explain variation in bat activity. Results Numerous interactions between landscape characteristics and the insect abundance affected bat activity above fields. For instance, Pipistrellus pipistrellus became more active with increasing insect abundance, but only above fields with a low proportion of woody vegetation cover in the surroundings. Additionally, the level of bat activity in summer depended on landscape characteristics. For example, the activity of Pipistrellus nathusii was relatively low in summer above fields that were surrounded by vegetation patches with a high degree of edge complexity (e.g., hedgerow). However, the activity remained at a relatively high level and did not differ between seasons above fields that were surrounded by vegetation patches with a low degree of edge complexity (e.g., roundly shaped forest patch). Conclusions Our results revealed that landscape characteristics and their interactions with insect abundance affected bat activity above conventionally managed fields and highlighted the opportunistic foraging behavior of bats. To improve the conditions for bats in agricultural landscapes, we recommend re-establishing landscape heterogeneity to protect aquatic habitats and to increase arthropod availability. KW - AgroScapeLabs KW - european bat species KW - agriculture KW - landscape KW - multi-scale habitat modeling KW - ecosystem service KW - conservation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428166 IS - 826 ER - TY - GEN A1 - Mayer, Martin A1 - Ullmann, Wiebke A1 - Sunde, Peter A1 - Fischer, Christina A1 - Blaum, Niels T1 - Habitat selection by the European hare in arable landscapes BT - the importance of small‐scale habitat structure for conservation T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Agricultural land‐use practices have intensified over the last decades, leading to population declines of various farmland species, including the European hare (Lepus europaeus). In many European countries, arable fields dominate agricultural landscapes. Compared to pastures, arable land is highly variable, resulting in a large spatial variation of food and cover for wildlife over the course of the year, which potentially affects habitat selection by hares. Here, we investigated within‐home‐range habitat selection by hares in arable areas in Denmark and Germany to identify habitat requirements for their conservation. We hypothesized that hare habitat selection would depend on local habitat structure, that is, vegetation height, but also on agricultural field size, vegetation type, and proximity to field edges. Active hares generally selected for short vegetation (1–25 cm) and avoided higher vegetation and bare ground, especially when fields were comparatively larger. Vegetation >50 cm potentially restricts hares from entering parts of their home range and does not provide good forage, the latter also being the case on bare ground. The vegetation type was important for habitat selection by inactive hares, with fabaceae, fallow, and maize being selected for, potentially providing both cover and forage. Our results indicate that patches of shorter vegetation could improve the forage quality and habitat accessibility for hares, especially in areas with large monocultures. Thus, policymakers should aim to increase areas with short vegetation throughout the year. Further, permanent set‐asides, like fallow and wildflower areas, would provide year‐round cover for inactive hares. Finally, the reduction in field sizes would increase the density of field margins, and farming different crop types within small areas could improve the habitat for hares and other farmland species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1076 KW - agriculture KW - arable land KW - conservation KW - GPS KW - habitat selection KW - Lepus europaeus KW - vegetation height Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-467891 SN - 1866-8372 IS - 1076 ER - TY - GEN A1 - Pradhan, Prajal A1 - Fischer, Günther A1 - Velthuizen, Harrij van A1 - Reusser, Dominik Edwin A1 - Kropp, Jürgen T1 - Closing yield gaps BT - how sustainable can we be? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Global food production needs to be increased by 60-110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73%, P2O5-fertilizer by 22-46%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 491 KW - climate-change KW - management KW - intensification KW - productivity KW - agriculture Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408105 SN - 1866-8372 IS - 491 ER - TY - GEN A1 - Wehrhan, Marc A1 - Rauneker, Philipp A1 - Sommer, Michael T1 - UAV-Based estimation of carbon exports from heterogeneous soil landscapes BT - a case study from the CarboZALF experimental area T2 - Sensors N2 - The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high spatial resolution of images, temporal flexibility and narrow-band spectral data from different wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental variables, like plant-related carbon dynamics in agricultural landscapes. In this paper, we quantify spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in 2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the Enhanced Vegetation Index (EVI) using near-infrared band b(899). The resulting map was transformed into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability at field- and plot-scale could be attributed to small-scale soil heterogeneity in part. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 451 KW - VI KW - soil landscape KW - carbon export KW - agriculture KW - multispectral KW - UAV Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407706 ER -