TY - GEN A1 - Lipke, Katrin A1 - Krüger, Frank A1 - Rößler, Dirk T1 - Subduction zone structure along Sumatra from receiver functions N2 - Receiver functions are a good tool to investigate the seismotectonic structure beneath the a seismic station. In this study we apply the method to stations situated on or near Sumatra to find constraints on a more detailed velocity model which should improve earthquake localisation. We estimate shallow Moho-depths (~ 21 km) close to the trench and depths of ~30 km at greater distances. First evidences for the dip direction of the slab of ~60° are provided. Receiver functions were calculated for 20 stations for altogether 110 earthquakes in the distance range between 30° and 95° from the receiver. However the number of receiver functions per station is strongly variable as it depends on the installation date, the signal-to-noise-ratio of the station and the reliability of the acquisition. N2 - Receiver Funkttion stellen eine gut Methode zur Untersuchung von Seismotektonischen Strukturen unterhalb einer seismischen Station dar. In dieser Arbeit wenden wir die Methode auf Station auf oder nahe Sumatra an um Hinweise für ein detaillierteres Geschwindigkeitsmodell zu erhalten, welches die Lokalisierung von Erdbeben verbessern sollte. Wir ermitteln flache Moho-Tiefen (~21 km) in der Nähe des Trenchs und Tiefen um die 30 km in größeren Distanzen. Erste Hinweise für eine Einfallsrichtung des Slabs von ~60° konnten gefunden werden. Receiver Funktionen wurden für 20 Stationen für insgesamt 110 Erdbeben im Distanzbereich zwischen 30° und 95° berechnet. allerdings ist die Anzahl von Receiver Funktionen pro Station sehr variabel, da sie vom Installationszeitpunkt, dem Signal-Rausch-Verhältnis und der Zuverlässigkeit der Datenaufnahme an der Station abhängt. KW - Receiver Funktionen KW - Sumatra KW - Seismologie KW - Subduktion KW - Receiver Functions KW - Sumatra KW - Seismology KW - Subduction Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18260 ER - TY - THES A1 - Pons, Michaël T1 - The Nature of the tectonic shortening in Central Andes T1 - Die Beschaffenheit der tektonischen Verkürzung in den Zentralanden N2 - The Andean Cordillera is a mountain range located at the western South American margin and is part of the Eastern- Circum-Pacific orogenic Belt. The ~7000 km long mountain range is one of the longest on Earth and hosts the second largest orogenic plateau in the world, the Altiplano-Puna plateau. The Andes are known as a non-collisional subduction-type orogen which developed as a result of the interaction between the subducted oceanic Nazca plate and the South American continental plate. The different Andean segments exhibit along-strike variations of morphotectonic provinces characterized by different elevations, volcanic activity, deformation styles, crustal thickness, shortening magnitude and oceanic plate geometry. Most of the present-day elevation can be explained by crustal shortening in the last ~50 Ma, with the shortening magnitude decreasing from ~300 km in the central (15°S-30°S) segment to less than half that in the southern part (30°S-40°S). Several factors were proposed that might control the magnitude and acceleration of shortening of the Central Andes in the last 15 Ma. One important factor is likely the slab geometry. At 27-33°S, the slab dips horizontally at ~100 km depth due to the subduction of the buoyant Juan Fernandez Ridge, forming the Pampean flat-slab. This horizontal subduction is thought to influence the thermo-mechanical state of the Sierras Pampeanas foreland, for instance, by strengthening the lithosphere and promoting the thick-skinned propagation of deformation to the east, resulting in the uplift of the Sierras Pampeanas basement blocks. The flat-slab has migrated southwards from the Altiplano latitude at ~30 Ma to its present-day position and the processes and consequences associated to its passage on the contemporaneous acceleration of the shortening rate in Central Andes remain unclear. Although the passage of the flat-slab could offer an explanation to the acceleration of the shortening, the timing does not explain the two pulses of shortening at about 15 Ma and 4 Ma that are suggested from geological observations. I hypothesize that deformation in the Central Andes is controlled by a complex interaction between the subduction dynamics of the Nazca plate and the dynamic strengthening and weakening of the South American plate due to several upper plate processes. To test this hypothesis, a detailed investigation into the role of the flat-slab, the structural inheritance of the continental plate, and the subduction dynamics in the Andes is needed. Therefore, I have built two classes of numerical thermo-mechanical models: (i) The first class of models are a series of generic E-W-oriented high-resolution 2D subduction models thatinclude flat subduction in order to investigate the role of the subduction dynamics on the temporal variability of the shortening rate in the Central Andes at Altiplano latitudes (~21°S). The shortening rate from the models was then validated with the observed tectonic shortening rate in the Central Andes. (ii) The second class of models are a series of 3D data-driven models of the present-day Pampean flat-slab configuration and the Sierras Pampeanas (26-42°S). The models aim to investigate the relative contribution of the present-day flat subduction and inherited structures in the continental lithosphere on the strain localization. Both model classes were built using the advanced finite element geodynamic code ASPECT. The first main finding of this work is to suggest that the temporal variability of shortening in the Central Andes is primarily controlled by the subduction dynamics of the Nazca plate while it penetrates into the mantle transition zone. These dynamics depends on the westward velocity of the South American plate that provides the main crustal shortening force to the Andes and forces the trench to retreat. When the subducting plate reaches the lower mantle, it buckles on it-self until the forced trench retreat causes the slab to steepen in the upper mantle in contrast with the classical slab-anchoring model. The steepening of the slab hinders the trench causing it to resist the advancing South American plate, resulting in the pulsatile shortening. This buckling and steepening subduction regime could have been initiated because of the overall decrease in the westwards velocity of the South American plate. In addition, the passage of the flat-slab is required to promote the shortening of the continental plate because flat subduction scrapes the mantle lithosphere, thus weakening the continental plate. This process contributes to the efficient shortening when the trench is hindered, followed by mantle lithosphere delamination at ~20 Ma. Finally, the underthrusting of the Brazilian cratonic shield beneath the orogen occurs at ~11 Ma due to the mechanical weakening of the thick sediments covered the shield margin, and due to the decreasing resistance of the weakened lithosphere of the orogen. The second main finding of this work is to suggest that the cold flat-slab strengthens the overriding continental lithosphere and prevents strain localization. Therefore, the deformation is transmitted to the eastern front of the flat-slab segment by the shear stress operating at the subduction interface, thus the flat-slab acts like an indenter that “bulldozes” the mantle-keel of the continental lithosphere. The offset in the propagation of deformation to the east between the flat and steeper slab segments in the south causes the formation of a transpressive dextral shear zone. Here, inherited faults of past tectonic events are reactivated and further localize the deformation in an en-echelon strike-slip shear zone, through a mechanism that I refer to as “flat-slab conveyor”. Specifically, the shallowing of the flat-slab causes the lateral deformation, which explains the timing of multiple geological events preceding the arrival of the flat-slab at 33°S. These include the onset of the compression and of the transition between thin to thick-skinned deformation styles resulting from the crustal contraction of the crust in the Sierras Pampeanas some 10 and 6 Myr before the Juan Fernandez Ridge collision at that latitude, respectively. N2 - Die Andenkordillere ist ein Gebirgszug am westlichen Rand Südamerikas und Teil des östlichen zirkumpazifischen Gebirgsgürtels. Der ~7000 km lange Gebirgszug ist einer der längsten der Erde und beherbergt mit dem Altiplano-Puna-Plateau das zweitgrößte orogenetische Plateau der Welt. Die Anden sind als nicht-kollisionsbedingtes Subduktionsgebirge bekannt, das durch die Wechselwirkung zwischen der subduzierten ozeanischen Nazca-Platte und der südamerikanischen Kontinentalplatte entstanden ist. Entlang des Höhenzugs der Anden lassen sich Segmente unterschiedlicher morphotektonischer Provinzen ausmachen, die durch Variationen in topographischer Höhe, vulkanischer Aktivität, Deformationsform, Krustendicke, Krustenverkürzung und ozeanischer Plattengeometrie gekennzeichnet sind. Der größte Teil der heutigen Hebung lässt sich durch die Krustenverkürzung der letzten 50 Mio. Jahre erklären, wobei das Ausmaß der Verkürzung von ca. 300 km im zentralen Segment (15°S-30°S) auf weniger als die Hälfte im südlichen Teil (30°S-40°S) abnimmt. Es wurden mehrere Faktoren vorgeschlagen, die das Ausmaß und die Beschleunigung der Verkürzung der zentralen Anden in den letzten 15 Mio. Jahren beeinflusst haben könnten. Ein wichtiger Faktor ist wahrscheinlich die Plattengeometrie. Durch die Subduktion des Juan-Fernandez-Rückens und dessen hohe Auftriebskraft fällt die Platte bei 27-33°S in ~100 km Tiefe horizontal ein und bildet den pampeanischen flat-slab. Es wird angenommen, dass die horizontale Subduktion den thermomechanischen Zustand des Sierras-Pampeanas-Vorlandes beeinflusst, indem sie beispielsweise die Lithosphäre stärkt und die dickschalige Verlagerung der Deformation nach Osten sowie die Hebung der kristallinen Basis der Sierras-Pampeanas fördert. Vor etwa 30 Mio. Jahren verschob sich der flat-slab von der geographischen Breite des Altiplano zu seiner heutigen Position nach Süden. Die mit der Positionsverlagerung verbundenen Prozesse und Folgen für die gleichzeitige Beschleunigung der Verkürzungsraten in den zentralen Anden sind noch immer unklar. Obwohl die Passage des flat-slab eine Erklärung für dafür sein könnte, erklärt ihr Zeitpunkt nicht die beiden aus der Geologie abgeleiteten Verkürzungsimpulse vor etwa 15 und 4 Mio. Jahren. Ich stelle die Hypothese auf, dass die Deformation in den zentralen Anden durch eine komplexe Wechselwirkung zwischen der Subduktionsdynamik der Nazca-Platte und der dynamischen Materialschwächung der südamerikanischen Platte aufgrund einer Reihe von Prozessen in der oberen Platte gesteuert wird. Um diese Hypothese zu prüfen, ist eine detaillierte Untersuchung der Rolle des flat-slab, sowie der strukturellen Vererbung der Kontinentalplatte und der Subduktionsdynamik in den Anden erforderlich. Daher habe ich zwei Klassen von numerischen thermomechanischen Modellen erstellt: (i) Die erste Klasse von Modellen umfasst eine Reihe von generischen E-W-orientierten 2D-Subduktionsmodellen mit hoher Auflösung. Diese beinhalten subhorizontalen Subduktion um die Rolle der Subduktionsdynamik auf die zeitliche Variabilität der Verkürzungsrate in den zentralen Anden auf dem Altiplano (~21°S) zu untersuchen. Die modellierte Verkürzungsrate wurde mit der beobachteten tektonischen Verkürzungsrate in den zentralen Anden validiert. (ii) Die zweite Klasse von Modellen besteht aus einer Reihe von datengesteuerten 3D-Modellen der heutigen pampeanischen flat-slab-Konfiguration und der Sierras Pampeanas (26-42°S). Diese Modelle zielen darauf ab, den relativen Beitrag der heutigen subhorizontalen Subduktion und der ererbten Strukturen in der kontinentalen Lithosphäre zur Dehnungslokalisierung zu untersuchen. Beide Modellklassen wurden mit Hilfe des fortschrittlichen geodynamischen Finite-Elemente-Codes ASPECT erstellt. Das erste Hauptergebnis dieser Arbeit ist die Vermutung, dass zeitliche Änderungen der Verkürzung in den Zentralanden in erster Linie durch die Subduktionsdynamik der Nazca-Platte gesteuert werden, während diese in die Mantelübergangszone eindringt. Die Dynamik hängt von der westwärts gerichteten Geschwindigkeit der südamerikanischen Platte ab, die die Hauptantriebskraft für die Krustenverkürzung in den Anden darstellt und den Subduktionsgraben zum Zurückziehen zwingt. Wenn die subduzierende Platte den unteren Erdmantel erreicht, wölbt sie sich auf, bis der erzwungene Rückzug des Grabens dazu führt, dass auch die Platte im oberen Erdmantel steiler wird. Die aufgesteilte Platte behindert wiederum den Graben, der sich der vorrückenden südamerikanischen Platte widersetzt, was eine pulsierende Verkürzung zur Folge hat. Dieses Subduktionsregime, bestehend aus Aufwölbung und Aufsteilung, könnte durch die allgemeine westwärts gerichtete Geschwindigkeitsabnahme der südamerikanischen Platte ausgelöst worden sein. Der Durchgang des flat-slab ist zudem eine notwendige Bedingung, um die Verkürzung der Kontinentalplatte voran zu treiben, da subhorizontale Subduktion Teile der Mantellithosphäre abträgt und so die Kontinentalplatte schwächt. Dieser Prozess trägt somit zur effizienten Verkürzung bei während der Graben behindert wird und ist gefolgt von der Ablösung der Mantellithosphäre vor etwa 20 Mio. Jahren. Das Subduzieren des brasilianischen kratonischen Schildes unter das Orogen erfolgte schließlich vor etwa 11 Mio. Jahren aufgrund der mechanischen Schwächung der dicken Sedimentschicht, die den Schildrand bedeckte, sowie wegen des abnehmenden Widerstands der geschwächten Gebirgslithosphäre. Das zweite Hauptergebnis dieser Arbeit ist die Vermutung, dass der kalte flat-slab die darüber liegende kontinentale Lithosphäre stärkt und damit verhindert, dass sich Verformungen lokalisieren können. Daher wird die Deformation durch die an der Subduktionsfläche wirkende Scherspannung auf die östliche Front des flat-slab-Segments übertragen. Der flat-slab wirkt wie ein Eindringling, der die unter mantle-keel bekannte Anhäufung von abgelöstem Mantelmaterial beiseite schiebt. Der Versatz in der ostwärts gerichteten Deformationsausbreitung der flachen und der steileren Plattensegmenten im Süden führt zur Bildung einer transpressiven dextralen Scherungszone. Hier werden ererbte Verwerfungen vergangener tektonischer Ereignisse reaktiviert und helfen bei der Lokalisierung neuer Deformation in einer en-echelon-artigen Scherungszone. Dies geschieht durch einen Mechanismus, den ich als "flat-slab-Conveyor" bezeichne. Das laterale Zusammenschieben wird besonders durch das Flacherwerden des flat-slab beeinflusst, welches den Zeitpunkt mehrerer geologischer Ereignisse erklärt, die der Ankunft des flat-slab bei 33°S vorangehen. Dazu gehören der Beginn der Kompression und der Übergang von dünn- zu dickschaliger Deformation, die sich aus der Krustenkontraktion in den Sierras Pampeanas etwa 10 bzw. 6 Mio. Jahre vor der Kollision mit dem Juan-Fernandez-Rücken auf diesem Breitengrad ergaben. KW - Andes KW - Orogen KW - tectonics KW - Subduction KW - Deformation KW - Shortening KW - Flat subduction KW - Geodynamics KW - Altiplano KW - Puna KW - Sierras Pampeanas KW - Foreland KW - Altiplano KW - Anden KW - Deformation KW - Flache Subduktion KW - Vorland KW - Geodynamik KW - Orogen KW - Puna KW - Verkürzung KW - Sierras Pampeanas KW - Subduktion KW - Tektonik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-600892 ER - TY - THES A1 - Rehak, Katrin T1 - Pliocene-Pleistocene landscape evolution in south-central Chile : interactions between tectonic, geomorphic, and climatic processes T1 - Pliozän-Pleistozäne Landschaftsentwicklung in Südzentralchile : Interaktionen zwischen tektonischen, geomorphologischen und klimatischen Prozessen N2 - Landscapes evolve in a complex interplay between climate and tectonics. Thus, the geomorphic characteristics of a landscape can only be understood if both, climatic and tectonic signals of past and ongoing processes can be identified. In order to evaluate the impact of both forcing factors it is crucial to quantify the evolution of geomorphic markers in natural environments. The Cenozoic Andes are an ideal setting to evaluate tectonic and climatic aspects of landscape evolution at different time and length scales in different natural compartments. The Andean Cordillera constitutes the type subduction orogen and is associated with the subduction of the oceanic Nazca Plate beneath the South American continent since at least 200 million years. In Chile and the adjacent regions this convergent margin is characterized by active tectonics, volcanism, and mountain building. Importantly, along the coast of Chile megathrust earthquakes occur frequently and influence landscape evolution. In fact, the largest earthquake ever recorded occurred in south-central Chile in 1960 and comprised a rupture zone of ~ 1000 km length. However, on longer time scales beyond historic documentation of seismicity it is not well known, how such seismotectonic segments have behaved and how they influence the geomorphic evolution of the coastal realms. With several semi-independent morphotectonic segments, recurrent megathrust earthquakes, and a plethora of geomorphic features indicating sustained tectonism, the margin of Chile is thus a key area to study relationships between surface processes and tectonics. In this study, I combined geomorphology, geochronology, sedimentology, and morphometry to quantify the Pliocene-Pleistocene landscape evolution of the tectonically active south-central Chile forearc. Thereby, I provide (1) new results about the influence of seismotectonic forearc segmentation on the geomorphic evolution and (2) new insights in the interaction between climate and tectonics with respect to the morphology of the Chilean forearc region. In particular, I show that the forearc is characterized by three long-term segments that are not correlated with short-lived earthquake-rupture zones that may. These segments are the Nahuelbuta, Toltén, and Bueno segments, each recording a distinct geomorphic and tectonic evolution. The Nahuelbuta and Bueno segments are undergoing active tectonic uplift. The long-term behavior of these two segments is manifested in form of two doubly plunging, growing antiforms that constitute an integral part of the Coastal Cordillera and record the uplift of marine and river terraces. In addition, these uplifting areas have caused major changes in flow directions or rivers. In contrast, the Toltén segment, situated between the two other segments, appears to be quasi-stable. In order to further quantify uplift and incision in the actively deforming Nahuelbuta segment, I dated an erosion surface and fluvial terraces in the Coastal Cordillera with cosmogenic 10Be and 26Al and optically stimulated luminescence, respectively. According to my results, late Pleistocene uplift rates corresponding to 0.88 mm a-1 are faster than surface-uplift rates averaging over the last 5 Ma, which are in the range of 0.21 mm a-1. This discrepancy suggests that surface uplift is highly variable in time and space and might preferably concentrate along reverse faults as indicated by a late Pleistocene flow reversal. In addition, the results of exposure dating with cosmogenic 10Be and 26Al indicate that the morphotectonic segmentation of this region of the forearc has been established in Pliocene time, coeval with the initiation of uplift of the Coastal Cordillera about 5 Ma ago, inferred to be related to a shift in subduction mode from erosion to accretion. Finally, I dated volcanic clasts obtained from alluvial surfaces in the Central Depression, a low-relief sector separating the Coastal from the Main Cordillera, with stable cosmogenic 3He and 21Ne, in order to reveal the controls of sediment accumulation in the forearc. My results document that these gently sloping surfaces have been deposited 150 to 300 ka ago. This deposition may be related to changes in the erosional regime during glacial episodes. Taken together, the data indicates that the overall geomorphic expression of the forearc is of post-Miocene age and may be intimately related to a climatic overprint of the tectonic system. This climatic forcing is also reflected in the topography and local relief of the Central and Southern Andes that vary considerably along the margin, determined by the dominant surface process that in turn is eventually controlled by climate. However, relief also partly reflects surface processes that have taken place under past climatic conditions. This emphasizes that due care has to be exercised when interpreting landscapes as mirrors of modern climates. N2 - Landschaften entwickeln sich im komplexen Zusammenspiel von Klima und Tektonik. Demzufolge können sie nur verstanden werden, wenn sowohl klimatische als auch tektonische Signale vergangener und rezenter Prozesse identifiziert werden. Um den Einfluss beider Faktoren zu bewerten, ist es deshalb wichtig, die Evolution geomorphologischer Marker in der Natur zu quantifizieren. Die känozoischen Anden sind eine ideale Region, um tektonische und klimatische Aspekte der Landschaftsentwicklung auf verschiedenen Zeit- und Längenskalen zu erforschen. Sie sind das Modell-Subduktionsorogen, assoziiert mit der Subduktion der ozeanischen Nazca-Platte unter den südamerikanischen Kontinent seit ca. 200 Mio Jahren. In Chile ist dieser konvergente Plattenrand geprägt von aktiver Tektonik, Vulkanismus und Gebirgsbildung. Bedeutenderweise ereignen sich entlang der Küste häufig Megaerdbeben, die die Landschaftsentwicklung stark beeinflussen. Tatsächlich ereignete sich das größte jemals aufgezeichnete Erdbeben mit einer Bruchzone von ca. 1000 km Länge 1960 im südlichen Zentralchile. Nichtsdestotrotz ist auf längeren Zeitskalen über historische Dokumentationen hinaus nicht bekannt, wie sich solche seismotektonischen Segmente verhalten und wie sie die geomorphologische Entwicklung der Küstengebiete beeinflussen. Mit semi-unabhängigen morphotektonischen Segmenten, wiederkehrenden Megaerdbeben und einer Fülle geomorphologischer Marker, die aktive Tektonik anzeigen, ist somit der Plattenrand von Chile ein Schlüsselgebiet für das Studium von Zusammenhängen zwischen Oberflächenprozessen und Tektonik. In dieser Arbeit kombiniere ich Geomorphologie, Geochronologie, Sedimentologie und Morphometrie, um die plio-pleistozäne Landschaftsentwicklung des tektonisch aktiven süd-zentralchilenischen Forearcs zu quantifizieren. Mit dieser Analyse liefere ich (1) neue Ergebnisse über den Einfluss seismotektonischer Forearc-Segmentierung auf die geomorphologischen Entwicklung und (2) neue Erkenntnisse über die Interaktion zwischen Klima und Tektonik bezüglich der Gestaltung des chilenischen Forearcs. Ich zeige, dass der Forearc in drei langlebige morphotektonische Segmente gegliedert ist, die nicht mit kurzlebigen Erdbebenbruchzonen korrelieren. Die Segmente heißen Nahuelbuta, Toltén und Bueno Segment, wovon jedes eine andere geomorphologische und tektonische Entwicklung durchläuft. Die Nahuelbuta und Bueno Segmente unterliegen aktiver tektonischer Hebung. Das langfristige Verhalten dieser beiden Segmente manifestiert sich in zwei beidseitig abtauchenden, wachsenden Antiklinalen, die integraler Bestandteil des Küstengebirges sind und die Hebung von marinen und fluvialen Terrassen aufzeichnen. Die Hebung verursachte weitreichende Veränderungen in den Fließrichtungen des Gewässernetzes. Im Gegensatz dazu ist das Toltén Segment, das sich zwischen den beiden anderen Segmenten befindet, quasi-stabil. Um die Hebung und Einschneidung in dem tektonisch aktiven Nahuelbuta Segment zu quantifizieren, habe ich eine Erosionsfläche und fluviale Terrassen in dem Küstengebirge mit kosmogenem 10Be und 26Al bzw. optisch stimulierter Lumineszenz datiert. Meinen Ergebnissen zufolge sind die spätpleistozänen Hebungsraten, die ca. 0,88 mm a-1 betragen, höher als die Oberflächenhebungsraten, die über die letzten 5 Mio Jahre mitteln und ca. 0,21 mm a-1 betragen. Diese Diskrepanz deutet an, dass die Hebung der Oberfläche räumlich und zeitlich sehr stark variiert und sich präferiert an Aufschiebungen konzentriert. Zusätzlich zeigen die Ergebnisse der Expositionsdatierung mit kosmogenem 10Be und 26Al, dass die morphotektonische Segmentierung im Pliozän etabliert wurde, zeitgleich mit dem Beginn der Hebung des Küstengebirges vor ca. 5 Mio Jahren infolge eines Wechsels des Subduktionsmodus von Erosion zu Akkretion. Schließlich habe ich vulkanische Klasten, die aus alluvialen Flächen im Längstal stammen, mit den stabilen kosmogenen Nukliden 3He und 21Ne datiert, um Aufschluss über die Faktoren zu erhalten, die die Sedimentablagerung im Forearc bestimmen. Meine Ergebnisse weisen darauf hin, dass diese flach einfallenden Oberflächen, die vor 150.000 bis 300.000 Jahren abgelagert wurden, in Zusammenhang mit Änderungen des Erosionsregimes in glazialen Episoden entstanden sind. Zusammenfassend zeigen die Daten, dass der heutige geomorphologische Ausdruck des Forearcs post-Miozän und eng mit einer klimatischen Überprägung des tektonischen Systems verknüpft ist. Der klimatische Einfluss spiegelt sich ebenfalls in der Topographie und dem lokalen Relief der Zentral- und Südanden wider. Beide Parameter variieren stark entlang des Plattenrandes, bestimmt durch den jeweils dominierenden Oberflächenprozess, der wiederum letztendlich vom vorherrschenden Klima abhängt. Allerdings reflektiert das Relief teilweise Oberflächenprozesse, die unter vergangenen Klimaten aktiv waren. Das betont die äußerst große Vorsicht, die nötig ist, wenn Landschaften als Spiegel des aktuellen Klimas interpretiert werden. KW - Morphometrie KW - Tektonik KW - Subduktion KW - kosmogene Nuklide KW - Chile KW - Morphometry KW - Tectonics KW - Subduction KW - Cosmogenic Nuclides KW - Chile Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-19793 ER - TY - GEN A1 - Rodriguez Piceda, Constanza A1 - Scheck Wenderoth, Magdalena A1 - Gomez Dacal, Maria Laura A1 - Bott, Judith A1 - Prezzi, Claudia Beatriz A1 - Strecker, Manfred T1 - Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The southern Central Andes (SCA) (between 27 degrees S and 40 degrees S) is bordered to the west by the convergent margin between the continental South American Plate and the oceanic Nazca Plate. The subduction angle along this margin is variable, as is the deformation of the upper plate. Between 33 degrees S and 35 degrees S, the subduction angle of the Nazca plate increases from sub-horizontal (< 5 degrees) in the north to relatively steep (similar to 30 degrees) in the south. The SCA contain inherited lithological and structural heterogeneities within the crust that have been reactivated and overprinted since the onset of subduction and associated Cenozoic deformation within the Andean orogen. The distribution of the deformation within the SCA has often been attributed to the variations in the subduction angle and the reactivation of these inherited heterogeneities. However, the possible influence that the thickness and composition of the continental crust have had on both short-term and long-term deformation of the SCA is yet to be thoroughly investigated. For our investigations, we have derived density distributions and thicknesses for various layers that make up the lithosphere and evaluated their relationships with tectonic events that occurred over the history of the Andean orogeny and, in particular, investigated the short- and long-term nature of the present-day deformation processes. We established a 3D model of lithosphere beneath the orogen and its foreland (29 degrees S-39 degrees S) that is consistent with currently available geological and geophysical data, including the gravity data. The modelled crustal configuration and density distribution reveal spatial relationships with different tectonic domains: the crystalline crust in the orogen (the magmatic arc and the main orogenic wedge) is thicker (similar to 55 km) and less dense (similar to 2900 kg/m(3)) than in the forearc (similar to 35 km, similar to 2975 kg/m(3)) and foreland (similar to 30 km, similar to 3000 kg/m(3)). Crustal thickening in the orogen probably occurred as a result of stacking of low-density domains, while density and thickness variations beneath the forearc and foreland most likely reflect differences in the tectonic evolution of each area following crustal accretion. No clear spatial relationship exists between the density distribution within the lithosphere and previously proposed boundaries of crustal terranes accreted during the early Paleozoic. Areas with ongoing deformation show a spatial correlation with those areas that have the highest topographic gradients and where there are abrupt changes in the average crustal-density contrast. This suggests that the short-term deformation within the interior of the Andean orogen and its foreland is fundamentally influenced by the crustal composition and the relative thickness of different crustal layers. A thicker, denser, and potentially stronger lithosphere beneath the northern part of the SCA foreland is interpreted to have favoured a strong coupling between the Nazca and South American plates, facilitating the development of a sub-horizontal slab. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1369 KW - Central andes KW - Lithospheric structure KW - Crustal density KW - Gravity KW - modelling KW - Subduction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-562628 SN - 1866-8372 IS - 7 ER -