TY - THES A1 - Fritzewski, Dario Jasper T1 - From fast to slow rotation in the open clusters NGC 2516 and NGC 3532 T1 - Der Übergang von schneller zu langsamer Rotation in den offenen Sternhaufen NGC 2516 und NGC 3532 N2 - Angular momentum is a particularly sensitive probe into stellar evolution because it changes significantly over the main sequence life of a star. In this thesis, I focus on young main sequence stars of which some feature a rapid evolution in their rotation rates. This transition from fast to slow rotation is inadequately explored observationally and this work aims to provide insights into the properties and time scales but also investigates stellar rotation in young open clusters in general. I focus on the two open clusters NGC 2516 and NGC 3532 which are ~150 Myr (zero-age main sequence age) and ~300 Myr old, respectively. From 42 d-long time series photometry obtained at the Cerro Tololo Inter-American Observatory, I determine stellar rotation periods in both clusters. With accompanying low resolution spectroscopy, I measure radial velocities and chromospheric emission for NGC 3532, the former to establish a clean membership and the latter to probe the rotation-activity connection. The rotation period distribution derived for NGC 2516 is identical to that of four other coeval open clusters, including the Pleiades, which shows the universality of stellar rotation at the zero-age main sequence. Among the similarities (with the Pleiades) the "extended slow rotator sequence" is a new, universal, yet sparse, feature in the colour-period diagrams of open clusters. From a membership study, I find NGC 3532 to be one of the richest nearby open clusters with 660 confirmed radial velocity members and to be slightly sub-solar in metallicity. The stellar rotation periods for NGC 3532 are the first published for a 300 Myr-old open cluster, a key age to understand the transition from fast to slow rotation. The fast rotators at this age have significantly evolved beyond what is observed in NGC 2516 which allows to estimate the spin-down timescale and to explore the issues that angular momentum models have in describing this transition. The transitional sequence is also clearly identified in a colour-activity diagram of stars in NGC 3532. The synergies of the chromospheric activity and the rotation periods allow to understand the colour-activity-rotation connection for NGC 3532 in unprecedented detail and to estimate additional rotation periods for members of NGC 3532, including stars on the "extended slow rotator sequence". In conclusion, this thesis probes the transition from fast to slow rotation but has also more general implications for the angular momentum evolution of young open clusters. N2 - Entgegen anderer Parameter ändert sich der Drehimpuls von kühlen Hauptreihensternen stark und eignet sich daher gut zur Untersuchung der Sternentwicklung. In dieser Arbeit fokussiere ich mich auf junge Hauptreihensterne, von denen einige einen ausgeprägten Übergang in ihren Rotationsperioden aufweisen. Dieser Übergang von schneller zu langsamer Rotation ist empirisch nur unzureichend erforscht und diese Arbeit zielt darauf ab, Einblicke in seine Eigenschaften und Zeitskalen zu geben, sie untersucht aber auch die stellare Rotation in jungen offenen Sternhaufen im Allgemeinen. Ich konzentriere mich auf die beiden offenen Sternhaufen NGC 2516 und NGC 3532, die ~150 Myr (Nullalter-Hauptreihe) bzw. ~300 Myr alt sind. Aus einer 42 Tage langen photometrischen Zeitreihe, die am Cerro Tololo Inter-American Observatory gewonnen wurde, bestimme ich Rotationsperioden in beiden Sternhaufen. Darüber hinaus messe ich mit niedrig auflösender Spektroskopie Radialgeschwindigkeiten und die chromosphärische Emission für Sterne in NGC 3532, erstere um eine sichere Mitgliedschaft zu etablieren und letztere um den Zusammenhang zwischen Rotation und Aktivität zu untersuchen. Die für NGC 2516 abgeleitete Rotationsperiodenverteilung ist identisch mit der von vier anderen gleichaltrigen offenen Sternhaufen, einschließlich der Plejaden, was die Gleichheit und Grundsätzlichkeit der Sternrotation auf der Nullalter-Hauptreihe zeigt. Neben den Ähnlichkeiten (mit den Plejaden) ist die "extended slow rotator sequence" ein neues, universelles, aber seltenes Merkmal in den Farben-Perioden-Diagrammen offener Sternhaufen. Aus einer Mitgliedschaftsstudie geht hervor, dass NGC 3532 mit 660 bestätigten Radialgeschwindigkeitsmitgliedern einer der größten nahen offenen Sternhaufen ist. Zudem weist er eine leicht sub-solare Metallizität auf. Die Rotationsperioden für NGC 3532 sind die ersten, die für einen 300 Myr alten offenen Sternhaufen veröffentlicht wurden, ein wichtiges Alter, um den Übergang von schneller zu langsamer Rotation zu verstehen. Die schnellen Rotatoren in diesem Alter sind deutlich weiter entwickelt als in NGC 2516 beobachtet, was es erlaubt, die Zeitskala für den Drehimpulsverlust abzuschätzen und die Probleme zu untersuchen, die Drehimpulsmodelle bei der Beschreibung dieses Übergangs haben. Die Übergangssequenz ist auch in einem Farben-Aktivitäts-Diagramm von Sternen in NGC 3532 deutlich zu erkennen. Die Synergien zwischen der chromosphärischen Aktivität und den Rotationsperioden erlauben es, den Zusammenhang zwischen intrinsischer Farbe, Aktivität und Rotation für NGC 3532 in einzigartigem Detail zu verstehen und zusätzliche Rotationsperioden für Mitglieder von NGC 3532 abzuschätzen, einschließlich der Sterne auf der "extended slow rotator sequence". Zusammenfassend untersucht diese Arbeit den Übergang von schneller zu langsamer Rotation, hat aber auch allgemeinere Implikationen für die Drehimpulsentwicklung von jungen offenen Sternhaufen. KW - Astronomy KW - Astrophysics KW - cool stars KW - angular momentum loss KW - stellar rotation KW - photometry KW - spectroscopy KW - gyrochronology KW - chromospheric activity KW - stellar activity KW - open cluster KW - NGC 2516 KW - NGC 3532 KW - Astronomie KW - Astrophysik KW - NGC 2516 KW - NGC 3532 KW - Drehimpulsverlust KW - chromospherische Aktivität KW - kühle Sterne KW - Gyrochronologie KW - offener Sternhaufen KW - Photometrie KW - Spektroskopie KW - stellare Aktivität KW - stellare Rotation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-531356 ER - TY - THES A1 - Gruner, David T1 - New frontiers in gyrochronology T1 - Neue Horizonte in Gyrochronologie BT - exploring the evolution of stellar rotation in open clusters and wide binaries BT - eine Untersuchung der Entwicklung von Sternrotation in offenen Sternhaufen und weiten Doppelsternsystemen N2 - Late-type stars are by far the most frequent stars in the universe and of fundamental interest to various fields of astronomy – most notably to Galactic archaeology and exoplanet research. However, such stars barely change during their main sequence lifetime; their temperature, luminosity, or chemical composition evolve only very slowly over the course of billions of years. As such, it is difficult to obtain the age of such a star, especially when it is isolated and no other indications (like cluster association) can be used. Gyrochronology offers a way to overcome this problem. Stars, just like all other objects in the universe, rotate and the rate at which stars rotate impacts many aspects of their appearance and evolution. Gyrochronology leverages the observed rotation rate of a late-type main sequence star and its systematic evolution to estimate their ages. Unlike the above-mentioned parameters, the rotation rate of a main sequence star changes drastically throughout its main sequence lifetime; stars spin down. The youngest stars rotate every few hours, whereas much older stars rotate only about once a month, or – in the case of some late M-stars – once in a hundred days. Given that this spindown is systematic (with an additional mass dependence), it gave rise to the idea of using the observed rotation rate of a star (and its mass or a suitable proxy thereof) to estimate a star’s age. This has been explored widely in young stellar open clusters but remains essentially unconstrained for stars older than the sun, and K and M stars older than 1 Gyr. This thesis focuses on the continued exploration of the spindown behavior to assess, whether gyrochronology remains applicable for stars of old ages, whether it is universal for late-type main sequence stars (including field stars), and to provide calibration mileposts for spindown models. To accomplish this, I have analyzed data from Kepler space telescope for the open clusters Ruprecht 147 (2.7 Gyr old) and M 67 (4 Gyr). Time series photometry data (light curves) were obtained for both clusters during Kepler’s K2 mission. However, due to technical limitations and telescope malfunctions, extracting usable data from the K2 mission to identify (especially long) rotation periods requires extensive data preparation. For Ruprecht 147, I have compiled a list of about 300 cluster members from the literature and adopted preprocessed light curves from the Kepler archive where available. They have been cleaned of the gravest of data artifacts but still contained systematics. After correcting them for said artifacts, I was able to identify rotation periods in 31 of them. For M 67 more effort was taken. My work on Ruprecht 147 has shown the limitations imposed by the preselection of Kepler targets. Therefore, I adopted the time series full frame image directly and performed photometry on a much higher spatial resolution to be able to obtain data for as many stars as possible. This also means that I had to deal with the ubiquitous artifacts in Kepler data. For that, I devised a method that correlates the artificial flux variations with the ongoing drift of the telescope pointing in order to remove it. This process was a large success and I was able to create light curves whose quality match and even exceede those that were created by the Kepler mission – all while operating on higher spatial resolution and processing fainter stars. Ultimately, I was able to identify signs of periodic variability in the (created) light curves for 31 and 47 stars in Ruprecht 147 and M 67, respectively. My data connect well to bluer stars of cluster of the same age and extend for the first time to stars redder than early-K and older than 1 Gyr. The cluster data show a clear flattening in the distribution of Ruprecht 147 and even a downturn for M 67, resulting in a somewhat sinusoidal shape. With that, I have shown that the systematic spindown of stars continues at least until 4 Gyr and stars continue to live on a single surface in age-rotation periods-mass space which allows gyrochronology to be used at least up to that age. However, the shape of the spindown – as exemplified by the newly discovered sinusoidal shape of the cluster sequence – deviates strongly from the expectations. I then compiled an extensive sample of rotation data in open clusters – very much including my own work – and used the resulting cluster skeleton (with each cluster forming a rip in color-rotation period-mass space) to investigate if field stars follow the same spindown as cluster stars. For the field stars, I used wide binaries, which – with their shared origin and coevality – are in a sense the smallest possible open clusters. I devised an empirical method to evaluate the consistency between the rotation rates of the wide binary components and found that the vast majority of them are in fact consistent with what is observed in open clusters. This leads me to conclude that gyrochronology – calibrated on open clusters – can be applied to determine the ages of field stars. N2 - Sterne mit späten Spektraltypen sind mit Abstand die Häufigsten im Universum und von großem Interesse für verschiedene Bereiche der Astronomie. Dabei sind insbesondere galaktische Archäologie und die Erforschung von Exoplanten zu nennen. Das Problem ist jedoch, dass sich diese Sterne nur sehr langsam entwickeln; ihre Temperatur, Helligkeit und chemische Zusammensetzung ändern kaum während ihrer langen Hauptreihenphase. Daher ist es schwierig für solche Sterne ein Alter zu bestimmen – vorallem wenn sie isoliert sind und es keine anderne Indikatoren (z.B. die Zugehörigkeit zu einem Sternhaufen) gibt. Eine Möglichkeit dieses Problem zu umgehen ist Gyrochronologie. Sterne, wie alle anderen Objekte im Universum, rotieren und die Rate, mit der sie rotieren, beeinflusst viele Aspekte ihrer Evolution. Gyrochronologie nutzt die beobachtete Rotation und ihre Änderung mit der Zeit als ein Mittel zur Altersbestimmung. Anders als zuvor genannte Parameter ändert sich die Rate, mit der Sterne rotieren, deutlich im Laufe ihrer Hauptreihenentwicklung. Sie verlangsamt sich. Junge Sterne rotieren in wenigen Stunden einmal um sich selbst – ältere brauchen dafür schon einen Monat oder gar bis zu über hundert Tage. Die Tatsache, dass das Abbremsen systematischen Gesetzmäßigkeiten unterliegt, gebar die Idee dies zu nutzen um das Alter eines Sternes zu bestimmen. Das Verhalten junger Sterne wurde ausführlich erfoscht, jedoch für die meisten Sterne älter als 1 Gyr nicht bekannt, wie sich die Rotationsraten entwickeln. Diese Arbeit fokussiert sich auf die fortgesetzte Erforschung des Abbremsens; insbesondere ob Gyrochronologie auch für ältere Sterne nutzbar ist, ob es universell für alle Sterne (inklusive Feldsterne) ist und darauf weitere Kalibrationspunkte für Abbrems-Modelle bereitzustellen. Dafür habe ich, basierend auf photometrischen Zeitserien (Lichtkurven) von Keplers K2 Programm, die offenen Sternhaufen Ruprecht 147 (2.7 Gyr alt) and M 67 (4 Gyr) untersucht. Es sind jedoch umfangreiche Schritte in der Datenverarbeitung notwendig um Fehlfunktionen und technischen Limitationen des Teleskops zu begegnen. Für Ruprecht 147 habe ich aus Literaturdaten eine Liste von 300 Haufen-zugehörigen Sternen erstellt und mit fertigreduzierte Lichtkurven aus dem Kepler Archiv kombiniert. Die gröbsten Datensystematiken wurden in diesen bereinigt, denoch sind problematische Artefakte weiterhin vorhanden. Die Arbeit an Ruprecht 147 hat die Limitationen von archivierten Kepler Daten gezeigt. Daher wurde für M 67 mehr Aufwand betrieben. Direkt basierend auf den photometrischen Auffnahmen habe ich eigene Lichtkurven erzeugt, was eine deutlich höhere räumliche Auflösung erlaubt hat. Das hieß jedoch auch, dass ich mich mit all Systematiken in Kepler Daten befassen musste. Dafür habe ich eine Methodik konzipiert, die die künstlichen Variation im aufgezeichneten Fluss mit der Position eines Sterns auf dem Detektor korreliert und daraus eine Korrektur bestimmt. Dieser Prozess war so erfolgreich, dass ich Lichtkurven kreiert habe, die in ihrer Qualität an die archivierten Daten heran kommen oder sie gar übersteigen. Nach entsprechender Korrektur der Artefakte konnte ich Rotationsperioden für 31 (in Ruprecht 147) und 47 (in M 67) Sterne identifizieren. Genau wie zuvor in jüngeren Sternhaufen gesehen, folgen auch die äelteren Sternhaufen einer klaren Sequenz im Farb-Rotations-Raum. Meine Daten schließen direkt an Ergebnisse gleichaltriger Haufen an und erweitern diese zum ersten Mal zu Sternen älter als 1 Gyr und röter als frühe K-Sterne. Meine Ergebnisse zeigen eine deutliche Abweichung von der erwarteten Entwicklung, verkörpert durch eine klare Abflachung der Sequenz für Ruprecht 147, die für M 67 eine sinusförmige Struktur annimmt. Dennoch konnte ich damit zeigen, dass sich das systematische Abbremsen der Rotation von Sterne auch bis 4 Gyr fortsetzt und Sterne sich weiterhin auf eine wohldefinierten Ebene im Farb-Rotations-Alters-Raum befinden. Das heißt auch, Gyrochronologie kann mindestens für bis zu 4 Gyr alte Sterne genutzt werden. Basierend auf meinen eigenen Ergebnissen und Literaturdaten für jüngere Sternhaufen habe ich einen Vergleich mit Feldsternen durchgeführt. Die Feldsterne für diesen Vergleich entstammen weiten Doppelsternsystemen. Deren gemeinsamer Ursprung erlaubt eine Evaluierung der inneren Konsistenz beider Sterne. Mein Vergleich hat gezeigt, dass Doppelsternsysteme mit sich selbst aber auch mit den Sternhaufen konsistent sind. Ich habe damit erstmalig gezeigt, dass sich die Rotation von Feldsternen und Haufensternen gleich entwickelt. In Konsequenz bedeutet dies auch, dass Gyrochronologie angewandt werden kann, um das Alter von Feldsternen zu bestimmen. KW - Gyrochronologie KW - gyrochronology KW - spindown KW - rotation KW - Rotation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-615268 ER -