TY - JOUR A1 - Aseev, Nikita A1 - Shprits, Yuri Y. A1 - Wang, Dedong A1 - Wygant, John A1 - Drozdov, Alexander A1 - Kellerman, Adam C. A1 - Reeves, Geoffrey D. T1 - Transport and loss of ring current electrons inside geosynchronous orbit during the 17 March 2013 storm JF - Journal of geophysical research : Space physics N2 - Ring current electrons (1–100 keV) have received significant attention in recent decades, but many questions regarding their major transport and loss mechanisms remain open. In this study, we use the four‐dimensional Versatile Electron Radiation Belt code to model the enhancement of phase space density that occurred during the 17 March 2013 storm. Our model includes global convection, radial diffusion, and scattering into the Earth's atmosphere driven by whistler‐mode hiss and chorus waves. We study the sensitivity of the model to the boundary conditions, global electric field, the electric field associated with subauroral polarization streams, electron loss rates, and radial diffusion coefficients. The results of the code are almost insensitive to the model parameters above 4.5 RERE, which indicates that the general dynamics of the electrons between 4.5 RE and the geostationary orbit can be explained by global convection. We found that the major discrepancies between the model and data can stem from the inaccurate electric field model and uncertainties in lifetimes. We show that additional mechanisms that are responsible for radial transport are required to explain the dynamics of ≥40‐keV electrons, and the inclusion of the radial diffusion rates that are typically assumed in radiation belt studies leads to a better agreement with the data. The overall effect of subauroral polarization streams on the electron phase space density profiles seems to be smaller than the uncertainties in other input parameters. This study is an initial step toward understanding the dynamics of these particles inside the geostationary orbit. KW - ring current electrons KW - magnetospheric convection KW - ensemble modeling KW - inner magnetosphere KW - electron transport KW - wave-particle interactions Y1 - 2019 U6 - https://doi.org/10.1029/2018JA026031 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 2 SP - 915 EP - 933 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ripoll, Jean-Francois A1 - Loridan, Vivien A1 - Denton, Michael H. A1 - Cunningham, Gregory A1 - Reeves, G. A1 - Santolik, O. A1 - Fennell, Joseph A1 - Turner, Drew L. A1 - Drozdov, Alexander A1 - Cervantes Villa, Juan Sebastian A1 - Shprits, Yuri Y. A1 - Thaller, Scott A. A1 - Kurth, William S. A1 - Kletzing, Craig A. A1 - Henderson, Michael G. A1 - Ukhorskiy, Aleksandr Y. T1 - Observations and Fokker-Planck Simulations of the L-Shell, Energy, and Times JF - Journal of geophysical research : Space physics N2 - The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch angle (alpha(0)) is analyzed during the calm 11-day interval (4-15 March) following the 1 March 2013 storm. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, alpha(0)) regions persist through 11 days of hiss wave scattering; the pitch angle-dependent inner belt core (L similar to <2.2 and E < 700 keV), pitch angle homogeneous outer belt low-energy core (L > similar to 5 and E similar to < 100 keV), and a distinct pocket of electrons (L similar to [4.5, 5.5] and E similar to [0.7, 2] MeV). The pitch angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for alpha(0) similar to <60 degrees, E > 100 keV, 3.5 < L < L-pp similar to 6. Thus, observed unidirectional flux decays can be used to estimate local pitch angle diffusion rates in that region. Top-hat distributions are computed and observed at L similar to 3-3.5 and E = 100-300 keV. KW - radiation belts KW - wave-particle interactions KW - electron lifetime KW - pitch angle diffusion coefficient KW - hiss waves Y1 - 2018 U6 - https://doi.org/10.1029/2018JA026111 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 2 SP - 1125 EP - 1142 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Wang, Dedong A1 - Shprits, Yuri Y. A1 - Zhelayskaya, Irina S. A1 - Agapitov, Oleksiy A1 - Drozdov, Alexander A1 - Aseev, Nikita T1 - Analytical chorus wave model derived from van Allen Probe Observations JF - Journal of geophysical research : Space physics N2 - Chorus waves play an important role in the dynamic evolution of energetic electrons in the Earth's radiation belts and ring current. Using more than 5 years of Van Allen Probe data, we developed a new analytical model for upper‐band chorus (UBC; 0.5fce < f < fce) and lower‐band chorus (LBC; 0.05fce < f < 0.5fce) waves, where fce is the equatorial electron gyrofrequency. By applying polynomial fits to chorus wave root mean square amplitudes, we developed regression models for LBC and UBC as a function of geomagnetic activity (Kp), L, magnetic latitude (λ), and magnetic local time (MLT). Dependence on Kp is separated from the dependence on λ, L, and MLT as Kp‐scaling law to simplify the calculation of diffusion coefficients and inclusion into particle tracing codes. Frequency models for UBC and LBC are also developed, which depends on MLT and magnetic latitude. This empirical model is valid in all MLTs, magnetic latitude up to 20°, Kp ≤ 6, L‐shell range from 3.5 to 6 for LBC and from 4 to 6 for UBC. The dependence of root mean square amplitudes on L are different for different bands, which implies different energy sources for different wave bands. This analytical chorus wave model is convenient for inclusion in quasi‐linear diffusion calculations of electron scattering rates and particle simulations in the inner magnetosphere, especially for the newly developed four‐dimensional codes, which require significantly improved wave parameterizations. KW - chorus waves KW - radiation belt electrons KW - ring current electrons KW - analytical model KW - wave-particle interactions KW - diffusion coefficients Y1 - 2019 U6 - https://doi.org/10.1029/2018JA026183 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 2 SP - 1063 EP - 1084 PB - American Geophysical Union CY - Washington ER -