TY - JOUR A1 - Bozzo, Enrico A1 - Bernardini, F. A1 - Ferrigno, Carlo A1 - Falanga, M. A1 - Romano, Patrizia A1 - Oskinova, Lida T1 - The accretion environment of supergiant fast X-ray transients probed with XMM-Newton JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Supergiant fast X-ray (SFXT) transients are a peculiar class of supergiant X-ray binaries characterized by a remarkable variability in the X-ray domain, widely ascribed to accretion from a clumpy stellar wind. Aims. In this paper we performed a systematic and homogeneous analysis of the sufficiently bright X-ray flares observed with XMM-Newton from the supergiant fast X-ray transients to probe spectral variations on timescales as short as a few hundred seconds. Our ultimate goal is to investigate whether SFXT flares and outbursts are triggered by the presence of clumps, and to reveal whether strongly or mildly dense clumps are required. Methods. For all sources, we employ a technique developed by our group already exploited in a number of our previous papers, making use of an adaptive rebinned hardness ratio to optimally select the time intervals for the spectral extraction. A total of twelve observations performed in the direction of five SFXTs are reported, providing the largest sample of events available so far. Results. Using the original results reported here and those obtained with our technique from the analysis of two previously published XMM-Newton observations of IGR J17544-2619 and IGR J18410-0535, we show that both strongly and mildly dense clumps can trigger these events. In the former case, the local absorption column density may increase by a factor of >> 3, while in the latter case, the increase is only a factor of similar to 2-3 (or lower). An increase in the absorption column density is generally recorded during the rise of the flares/outbursts, while a drop follows when the source achieves peak flux. In a few cases, a re-increase of the absorption column density after the flare is also detected, and we discovered one absorption event related to the passage of an unaccreted clump in front of the compact object. Overall, there seems to be no obvious correlation between the dynamic ranges in the X-ray fluxes and absorption column densities in supergiant fast X-ray transients, with an indication that lower densities are recorded at the highest fluxes. Conclusions. The spectral variations measured in all sources are in agreement with the idea that the flares/outbursts are triggered by the presence of dense structures in the wind interacting with the X-rays from the compact object (leading to photoionization). The lack of correlation between the dynamic ranges in the X-ray fluxes and absorption column densities can be explained by the presence of accretion inhibition mechanism(s). Based on the knowledge acquired so far on the SFXTs, we propose a classification of the flares/outbursts from these sources in order to drive future observational investigations. We suggest that the difference between the classes of flares/outbursts is related to the fact that the mechanism(s) inhibiting accretion can be overcome more easily in some sources compared to others. We also investigate the possibility that different stellar wind structures, other than clumps, could provide the means to temporarily overcome the inhibition of accretion in supergiant fast X-ray transients. KW - X-rays: individuals: IGRJ18450-0435 KW - X-rays: individuals: IGRJ17544-2619 KW - X-rays: binaries KW - X-rays: individuals: SAXJ1818.6-1703 KW - X-rays: individuals: IGRJ17354-3255 KW - X-rays: individuals: IGRJ16328-4726 Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730398 SN - 1432-0746 VL - 608 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Bozzo, Enrico A1 - Bhalerao, V. A1 - Pradhan, Prajal A1 - Tomsick, J. A1 - Romano, Patrizia A1 - Ferrigno, Carlo A1 - Chaty, S. A1 - Oskinova, Lida A1 - Manousakis, A. A1 - Walter, R. A1 - Falanga, M. A1 - Campana, S. A1 - Stella, L. A1 - Ramolla, M. A1 - Chini, R. T1 - Multi-wavelength observations of IGR J17544-2619 from quiescence to outburst JF - Journal of geophysical research : Earth surface N2 - In this paper we report on a long multi-wavelength observational campaign of the supergiant fast X-ray transient prototype IGR J17544-2619. A 150 ks-long observation was carried out simultaneously with XMM-Newton and NuSTAR, catching the source in an initial faint X-ray state and then undergoing a bright X-ray outburst lasting approximately 7 ks. We studied the spectral variability during outburst and quiescence by using a thermal and bulk Comptonization model that is typically adopted to describe the X-ray spectral energy distribution of young pulsars in high mass X-ray binaries. Although the statistics of the collected X-ray data were relatively high, we could neither confirm the presence of a cyclotron line in the broad-band spectrum of the source (0.5-40 keV), nor detect any of the previously reported tentative detections of the source spin period. The monitoring carried out with Swift/XRT during the same orbit of the system observed by XMM-Newton and NuSTAR revealed that the source remained in a low emission state for most of the time, in agreement with the known property of all supergiant fast X-ray transients being significantly sub-luminous compared to other supergiant X-ray binaries. Optical and infrared observations were carried out for a total of a few thousand seconds during the quiescence state of the source detected by XMM-Newton and NuSTAR. The measured optical and infrared magnitudes were slightly lower than previous values reported in the literature, but compatible with the known micro-variability of supergiant stars. UV observations obtained with the UVOT telescope on-board Swift did not reveal significant changes in the magnitude of the source in this energy domain compared to previously reported values. KW - X-rays: binaries Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201629311 SN - 1432-0746 VL - 596 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Bozzo, Enrico A1 - Ferrigno, Carlo A1 - Oskinova, Lida A1 - Ducci, Lorenzo T1 - Accretion of a clumped wind from a red supergiant donor on to a magnetar is suggested by the analysis of the XMM-Newton and NuSTAR observations of the X-ray binary 3A 1954+319 JF - Monthly notices of the Royal Astronomical Society N2 - 3A 1954+319 has been classified for a long time as a symbiotic X-ray binary, hosting a slowly rotating neutron star and an aged M red giant. Recently, this classification has been revised thanks to the discovery that the donor star is an M supergiant. This makes 3A 1954+319 a rare type of high-mass X-ray binary consisting of a neutron star and a red supergiant donor. In this paper, we analyse two archival and still unpublished XMM-Newton and NuSTAR observations of the source. We perform a detailed hardness ratio-resolved spectral analysis to search for spectral variability that could help investigating the structures of the inhomogeneous M supergiant wind from which the neutron star is accreting. We discuss our results in the context of wind-fed supergiant X-ray binaries and show that the newest findings on 3A 1954+319 reinforce the hypothesis that the neutron star in this system is endowed with a magnetar-like magnetic field strength (greater than or similar to 10(14) G). KW - accretion KW - stars: massive KW - stars: neutron KW - X-rays: binaries KW - X-rays: individual: 3A 1954+319 KW - X-rays: stars KW - accretion discs Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab3688 SN - 0035-8711 SN - 1365-2966 VL - 510 IS - 3 SP - 4645 EP - 4653 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bozzo, Enrico A1 - Oskinova, Lida A1 - Feldmeier, Achim A1 - Falanga, M. T1 - Clumpy wind accretion in supergiant neutron star high mass X-ray binaries JF - BMC neuroscience N2 - The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain. KW - stars: neutron KW - X-rays: binaries KW - supergiants Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628341 SN - 1432-0746 VL - 589 SP - 369 EP - 389 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Bozzo, Enrico A1 - Oskinova, Lida A1 - Lobel, A. A1 - Hamann, Wolf-Rainer T1 - The super-orbital modulation of supergiant high-mass X-ray binaries JF - Astronomy and astrophysics : an international weekly journal N2 - The long-term X-ray light curves of classical supergiant X-ray binaries and supergiant fast X-ray transients show relatively similar super-orbital modulations, which are still lacking a sound interpretation. We propose that these modulations are related to the presence of corotating interaction regions (CIRs) known to thread the winds of OB supergiants. To test this hypothesis, we couple the outcomes of three-dimensional (3D) hydrodynamic models for the formation of CIRs in stellar winds with a simplified recipe for the accretion onto a neutron star. The results show that the synthetic X-ray light curves are indeed modulated by the presence of the CIRs. The exact period and amplitude of these modulations depend on a number of parameters governing the hydrodynamic wind models and on the binary orbital configuration. To compare our model predictions with the observations, we apply the 3D wind structure previously shown to well explain the appearance of discrete absorption components in the UV time series of a prototypical B0.5I-type supergiant. Using the orbital parameters of IGRJ 16493-4348, which has the same B0.5I donor spectral type, the period and modulations in the simulated X-ray light curve are similar to the observed ones, thus providing support to our scenario. We propose that the presence of CIRs in donor star winds should be considered in future theoretical and simulation efforts of wind-fed X-ray binaries. KW - X-rays: stars KW - X-rays: binaries KW - gamma rays: stars KW - stars: massive KW - stars: neutron Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731930 SN - 1432-0746 VL - 606 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Bozzo, Enrico A1 - Romano, Patrizia A1 - Ferrigno, Carlo A1 - Oskinova, Lida T1 - The symbiotic X-ray binaries Sct X-1, 4U 1700+24, and IGR J17329-2731 JF - Monthly notices of the Royal Astronomical Society N2 - Symbiotic X-ray binaries are systems hosting a neutron star accreting form the wind of a late-type companion. These are rare objects and so far only a handful of them are known. One of the most puzzling aspects of the symbiotic X-ray binaries is the possibility that they contain strongly magnetized neutron stars. These are expected to be evolutionary much younger compared to their evolved companions and could thus be formed through the (yet poorly known) accretion induced collapse of a white dwarf. In this paper, we perform a broad-band X-ray and soft gamma-ray spectroscopy of two known symbiotic binaries, Sct X-1 and 4U 1700+24, looking for the presence of cyclotron scattering features that could confirm the presence of strongly magnetized NSs. We exploited available Chandra, Swift, and NuSTAR data. We find no evidence of cyclotron resonant scattering features (CRSFs) in the case of Sct X-1 but in the case of 4U 1700+24 we suggest the presence of a possible CRSF at similar to 16 keV and its first harmonic at similar to 31 keV, although we could not exclude alternative spectral models for the broad-band fit. If confirmed by future observations, 4U 1700+24 could be the second symbiotic X-ray binary with a highly magnetized accretor. We also report about our long-term monitoring of the last discovered symbiotic X-ray binary IGR J17329-2731 performed with Swift/XRT. The monitoring revealed that, as predicted, in 2017 this object became a persistent and variable source, showing X-ray flares lasting for a few days and intriguing obscuration events that are interpreted in the context of clumpy wind accretion. KW - accretion KW - accretion discs KW - stars: massive KW - stars: neutron KW - X-rays: binaries KW - X-rays: individual: SctX-1 KW - X-rays: individual: 4U1700+24; KW - X-rays: stars KW - X-rays: individual: IGRJ17329-2731 Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac907 SN - 0035-8711 SN - 1365-2966 VL - 513 IS - 1 SP - 42 EP - 54 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Brown, John C. A1 - Barrett, R. K. A1 - Oskinova, Lida A1 - Owocki, S. P. A1 - Hamann, Wolf-Rainer A1 - de Jong, J. A. A1 - Kaper, L. A1 - Henrichs, H. F. T1 - Inference of hot star density stream properties from data on rotationally recurrent DACs N2 - The information content of data on rotationally periodic recurrent discrete absorption components (DACs) in hot star wind emission lines is discussed. The data comprise optical depths tau(w,phi) as a function of dimensionless Doppler velocity w=(Deltalambda/lambda(0))(c/v(infinity)) and of time expressed in terms of stellar rotation angle phi. This is used to study the spatial distributions of density, radial and rotational velocities, and ionisation structures of the corotating wind streams to which recurrent DACs are conventionally attributed. The simplifying assumptions made to reduce the degrees of freedom in such structure distribution functions to match those in the DAC data are discussed and the problem then posed in terms of a bivariate relationship between tau(w, phi) and the radial velocity v(r)(r), transverse rotation rate Omega(r) and density rho(r, phi) structures of the streams. The discussion applies to cases where: the streams are equatorial; the system is seen edge on; the ionisation structure is approximated as uniform; the radial and transverse velocities are taken to be functions only of radial distance but the stream density is allowed to vary with azimuth. The last kinematic assumption essentially ignores the dynamical feedback of density on velocity and the relationship of this to fully dynamical models is discussed. The case of narrow streams is first considered, noting the result of Hamann et al. (2001) that the apparent acceleration of a narrow stream DAC is higher than the acceleration of the matter itself, so that the apparent slow acceleration of DACs cannot be attributed to the slowness of stellar rotation. Thus DACs either involve matter which accelerates slower than the general wind flow, or they are formed by structures which are not advected with the matter flow but propagate upstream (such as Abbott waves). It is then shown how, in the kinematic model approximation, the radial speed of the absorbing matter can be found by inversion of the apparent acceleration of the narrow DAC, for a given rotation law. The case of broad streams is more complex but also more informative. The observed tau(w,phi) is governed not only by v(r)(r) and Omega(r) of the absorbing stream matter but also by the density profile across the stream, determined by the azimuthal (phi(0)) distribution function F- 0(phi(0)) of mass loss rate around the stellar equator. When F-0(phi(0)) is fairly wide in phi(0), the acceleration of the DAC peak tau(w, phi) in w is generally slow compared with that of a narrow stream DAC and the information on v(r)(r), Omega(r) and F-0(phi(0)) is convoluted in the data tau(w, phi). We show that it is possible, in this kinematic model, to recover by inversion, complete information on all three distribution functions v(r)(r), Omega(r) and F- 0(phi(0)) from data on tau(w, phi) of sufficiently high precision and resolution since v(r)(r) and Omega(r) occur in combination rather than independently in the equations. This is demonstrated for simulated data, including noise effects, and is discussed in relation to real data and to fully hydrodynamic models Y1 - 2004 SN - 0004-6361 ER - TY - JOUR A1 - Castro, Norberto A1 - Fossati, Luca A1 - Hubrig, Swetlana A1 - Simon Díaz, Sergio A1 - Schoeller, Markus A1 - Ilyin, Ilya A1 - Carrol, Thorsten A. A1 - Langer, Norbert A1 - Morel, Thierry A1 - Schneider, Fabian R. N. A1 - Przybilla, Norbert A1 - Herrero, Artemio A1 - de Koter, Alex A1 - Oskinova, Lida A1 - Reisenegger, Andreas A1 - Sana, Hugues T1 - B fields in OB stars (BOB) Detection of a strong magnetic field in the O9.7 V star HD 54879 JF - Astronomy and astrophysics : an international weekly journal N2 - The number of magnetic stars detected among massive stars is small; nevertheless, the role played by the magnetic field in stellar evolution cannot be disregarded. Links between line profile variability, enhancements/depletions of surface chemical abundances, and magnetic fields have been identified for low-mass B-stars, but for the O-type domain this is almost unexplored. Based on FORS 2 and HARPS spectropolarimetric data, we present the first detection of a magnetic field in HD54879, a single slowly rotating O9.7 V star. Using two independent and different techniques we obtained the firm detection of a surface average longitudinal magnetic field with a maximum amplitude of about 600 G, in modulus. A quantitative spectroscopic analysis of the star with the stellar atmosphere code FASTWIND results in an effective temperature and a surface gravity of 33 000 +/- 1000K and 4.0 +/- 0.1 dex. The abundances of carbon, nitrogen, oxygen, silicon, and magnesium are found to be slightly lower than solar, but compatible within the errors. We investigate line-profile variability in HD54879 by complementing our spectra with spectroscopic data from other recent OB-star surveys. The photospheric lines remain constant in shape between 2009 and 2014, although H alpha shows a variable emission. The H alpha emission is too strong for a standard O9.7 V and is probably linked to the magnetic field and the presence of circumstellar material. Its normal chemical composition and the absence of photospheric line profile variations make HD54879 the most strongly magnetic, non-variable single O-star detected to date. KW - stars: atmospheres KW - stars: evolution KW - stars: magnetic field KW - stars: massive KW - stars: individual: HD 54879 Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425354 SN - 1432-0746 VL - 581 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Evans, C. J. A1 - Hainich, Rainer A1 - Oskinova, Lida A1 - Gallagher, J. S. A1 - Chu, Y.-H. A1 - Gruendl, R. A. A1 - Hamann, Wolf-Rainer A1 - Henault-Brunet, V. A1 - Todt, Helge Tobias T1 - A rare early-type star revealed in the wing of the small megellanic cloud JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Sk 183 is the visually brightest star in the N90 nebula, a young star-forming region in the Wing of the Small Magellanic Cloud (SMC). We present new optical spectroscopy from the Very Large Telescope which reveals Sk 183 to be one of the most massive O-type stars in the SMC. Classified as an O3-type dwarf on the basis of its nitrogen spectrum, the star also displays broadened He I absorption, which suggests a later type. We propose that Sk 183 has a composite spectrum and that it is similar to another star in the SMC, MPG 324. This brings the number of rare O2- and O3-type stars known in the whole of the SMC to a mere four. We estimate physical parameters for Sk 183 from analysis of its spectrum. For a single-star model, we estimate an effective temperature of 46 +/- 2 kK, a low mass-loss rate of similar to 10(-7) M-circle dot yr(-1), and a spectroscopic mass of 46(-8)(+ 9) M-circle dot (for an adopted distance modulus of 18.7 mag to the young population in the SMC Wing). An illustrative binary model requires a slightly hotter temperature (similar to 47.5 kK) for the primary component. In either scenario, Sk 183 is the earliest-type star known in N90 and will therefore be the dominant source of hydrogen-ionizing photons. This suggests Sk 183 is the primary influence on the star formation along the inner edge of the nebula. KW - open clusters and associations: individual (NGC 602) KW - stars: early-type KW - stars: fundamental parameters KW - stars: individual (Sanduleak 183) Y1 - 2012 U6 - https://doi.org/10.1088/0004-637X/753/2/173 SN - 0004-637X VL - 753 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Evans, Nancy Remage A1 - DeGioia-Eastwood, Kathleen A1 - Gagne, Marc A1 - Townsley, Leisa A1 - Broos, Patrick S. A1 - Wolk, Scott J. A1 - Naze, Yael A1 - Corcoran, Michael A1 - Oskinova, Lida A1 - Moffat, Anthony F. J. A1 - Wang, Junfeng A1 - Walborn, Nolan R. T1 - The search for low-mass companions of b stars in the Carina Nebula cluster trumpler 16 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - We have developed lists of likely B3-A0 stars (called "late B" stars) in the young cluster Trumpler 16. The following criteria were used: location within 3' of eta Car, an appropriate V and B - V combination, and proper motion (where available). Color and magnitude cuts have been made assuming an E(B - V) = 0.55 mag +/- 0.1, which is a good approximation close to the center of Trumpler 16. These lists have been cross-correlated with X-ray sources found in the Chandra Carina Complex Project. Previous studies have shown that only very rarely (if at all) do late main-sequence B stars produce X-rays. We present evidence that the X-ray-detected sources are binaries with low-mass companions, since stars less massive than 1.4 M-circle dot are strong X-ray sources at the age of the cluster. Both the median X-ray energies and X-ray luminosities of these sources are in good agreement with values for typical low-mass coronal X-ray sources. We find that 39% of the late B stars based on a list with proper motions have low-mass companions. Similarly, 32% of a sample without proper motions have low-mass companions. We discuss the X-ray detection completeness. These results on low-mass companions of intermediate-mass stars are complementary to spectroscopic and interferometric results and probe new parameter space of low-mass companions at all separations. They do not support a steeply rising distribution of mass ratios to low masses for intermediate-mass (5 M-circle dot) primaries, such as would be found by random pairing from the initial mass function. KW - open clusters and associations: individual (Trumpler 16) KW - stars: massive Y1 - 2011 U6 - https://doi.org/10.1088/0067-0049/194/1/13 SN - 0067-0049 VL - 194 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER -