TY - JOUR A1 - Boston, Marisa Ferrara A1 - Hale, John T. A1 - Vasishth, Shravan A1 - Kliegl, Reinhold T1 - Parallel processing and sentence comprehension difficulty JF - Language and cognitive processes N2 - Eye fixation durations during normal reading correlate with processing difficulty, but the specific cognitive mechanisms reflected in these measures are not well understood. This study finds support in German readers' eye fixations for two distinct difficulty metrics: surprisal, which reflects the change in probabilities across syntactic analyses as new words are integrated; and retrieval, which quantifies comprehension difficulty in terms of working memory constraints. We examine the predictions of both metrics using a family of dependency parsers indexed by an upper limit on the number of candidate syntactic analyses they retain at successive words. Surprisal models all fixation measures and regression probability. By contrast, retrieval does not model any measure in serial processing. As more candidate analyses are considered in parallel at each word, retrieval can account for the same measures as surprisal. This pattern suggests an important role for ranked parallelism in theories of sentence comprehension. KW - Reading KW - Parsing KW - Computer model KW - Corpus Y1 - 2011 U6 - https://doi.org/10.1080/01690965.2010.492228 SN - 0169-0965 VL - 26 IS - 3 SP - 301 EP - 349 PB - Wiley CY - Hove ER - TY - THES A1 - Chandra, Johan T1 - The role of the oculomotor control in eye movements during reading N2 - Most reading theories assume that readers aim at word centers for optimal information processing. During reading, saccade targeting turns out to be imprecise: Saccades’ initial landing positions often miss the word centers and have high variance, with an additional systematic error that is modulated by the distance from the launch site to the center of the target word. The performance of the oculomotor system, as reflected in the statistics of within-word landing positions, turns out to be very robust and mostly affected by the spatial information during reading. Hence, it is assumed that the saccade generation is highly automated. The main goal of this thesis is to explore the performance of the oculomotor system under various reading conditions where orthographic information and the reading direction were manipulated. Additionally, the challenges in understanding the eye movement data to represent the oculomotor process during reading are addressed. Two experimental studies and one simulation study were conducted for this thesis, which resulted in the following main findings: (i) Reading texts with orthographic manipulations leads to specific changes in the eye movement patterns, both in temporal and spatial measures. The findings indicate that the oculomotor control of eye movements during reading is dependent on reading conditions (Chapter 2 & 3). (ii) Saccades’ accuracy and precision can be simultaneously modulated under reversed reading condition, supporting the assumption that the random and systematic oculomotor errors are not independent. By assuming that readers increase the precision of sensory observation while maintaining the learned prior knowledge when reading direction was reversed, a process-oriented Bayesian model for saccade targeting can account for the simultaneous reduction of oculomotor errors (Chapter 2). (iii) Plausible parameter values serving as proxies for the intended within-word landing positions can be estimated by using the maximum a posteriori estimator from Bayesian inference. Using the mean value of all observations as proxies is insufficient for studies focusing on the launch-site effect because the method exhibits the strongest bias when estimating the size of the effect. Mislocated fixations remain a challenge for the currently known estimation methods, especially when the systematic oculomotor error is large (Chapter 4). The results reported in this thesis highlight the role of the oculomotor system, together with underlying cognitive processes, in eye movements during reading. The modulation of oculomotor control can be captured through a precise analysis of landing positions. N2 - Zahlreiche Theorien des Lesens gehen davon aus, dass Sakkaden beim Lesen auf die Wortmitte abzielen, um eine optimale Informationsverarbeitung zu erreichen. Die Lan- depositionen von Sakkaden verfehlen oft die Wortmitte und weisen eine hohe Varianz auf, mit einem zusätzlichen systematischen Fehler, der durch die Entfernung zwischen der Sakkadensstartposition und der Position der Wortmitte moduliert wird. Das Verhalten der Okulomotorik, wie es sich in der Statistik der Sakkadenlandepositionen widerspiegelt, erweist sich als sehr robust und wird hauptsächlich von räumlichen Informationen beeinflusst. Daher wird angenommen, dass der Sakkadengenerierungprozess automatisiert ist. Das Hauptziel dieser Dissertation ist es, das Verhalten des okulomotorischen Systems unter verschiedenen Lesebedingungen zu untersuchen. Hierzu wurden orthographische Informationen und die Leserichtung manipuliert. Blickbewegungsdaten repräsentieren den okulomotorischen Prozess beim Lesen. Die Herausforderungen beim Verständnis dieser Daten wurden thematisiert. Insgesamt wurden zwei experimentelle Studien und eine Simulationsstudie durchgeführt, die zu folgenden Hauptergebnissen führen: (i) Die Blickbewegungsmuster beim Lesen von Texten mit manipulierter Orthographie veränderten sich spezifisch zur jeweiligen Bedingung, sowohl in zeitlichen als auch räumlichen Kennwerten der Blickbewegungsdaten. Dies legt nahe, dass die okulomotorische Kontrolle beim Lesen an die Manipulation anpasst (Kapitel 2 & 3). (ii) Sowohl Genauigkeit, als auch Präzision von Sakkaden lassen sich durch die veränderte Leserichtung verbessern. Das Ergebnis zeigt, dass systematische und zufällige Fehler des okulomotorischen Systems nicht unabhängig sind. Das Bayes’sche Model zur Sakkadenplanung kann die empirischen Ergebnisse approximieren und zeitgleich die verbesserte Sakkadenausrichtung erklären. In der Rechts-nach-Links Lesebedingung verbessert sich die Präzision von sensorischen Informationen, während das a priori erlernte Vorwissen unverändert bleibt (Kapitel 2). (iii) Plausible Parameterwerte, die als Annäherung für intendierte Landepositionen dienen, können durch Verwendung des maximalen a posteriori Schätzers aus der Bayes’schen Inferenz geschätzt werden. Die einfache Mittelwertsmethode weist die stärksten Verzerrung bei der Schätzung der Effektstärke des Launch-Site-Effekts auf. Daher ist sie nicht ausreichend um den Effekt zu beschreiben. Falsch verorterte Fixationen bleiben eine Herausforderung für die derzeit bekannten Schätzmethoden, insbesondere wenn der systematische okulomotorische Fehler groß ist (Kapitel 4). Die in dieser Arbeit berichteten Ergebnisse unterstreichen die Rolle des okulomotorischen Systems, zusammen mit den zugrundeliegenden kognitiven Prozessen, bei der Blicksteuerung beim Lesen. Die Modulation der okulomotorischen Steuerung kann durch die genauen Analysen der Sakkadenlandepositionen erfasst werden. T2 - Die Rolle der Okulomotorik in Blickbewegungen beim Lesen KW - Oculomotor control KW - Eye movements KW - Reading KW - Blickbewegungen KW - Okulomotorik KW - Lesen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475930 ER - TY - JOUR A1 - Cunnings, Ian A1 - Patterson, Clare A1 - Felser, Claudia T1 - Variable binding and coreference in sentence comprehension: Evidence from eye movements JF - Journal of memory and language KW - Pronoun resolution KW - Eye movements KW - Reading KW - Memory retrieval Y1 - 2014 U6 - https://doi.org/10.1016/j.jml.2013.10.001 SN - 0749-596X SN - 1096-0821 VL - 71 SP - 39 EP - 56 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Ehm, Jan-Henning A1 - Lonnemann, Jan A1 - Brandenburg, Janin A1 - Huschka, Sina Simone A1 - Hasselhorn, Marcus A1 - Lervag, Arne T1 - Exploring factors underlying children’s acquisition and retrieval of sound sound-symbol association skills JF - Journal of experimental child psychology N2 - Letter knowledge is considered an important cognitive foundation for learning to read. The underlying mechanisms of the association between letter knowledge and reading skills are, however, not fully understood. Acquiring letter knowledge depends on the ability to learn and retrieve sound–symbol pairings. In the current study, this process was explored by setting preschool children’s (N = 242, mean age = 5.57 years) performance in the acquisition and retrieval of a paired associate learning (PAL) task in relation to their letter knowledge as well as to their performance in tasks assessing precursors of reading skills (i.e., phonological awareness, rapid automatized naming, phonological short-term memory, backward recall, and response inhibition). Multiple regression analyses revealed that performance in the acquisition of the PAL task was significantly associated with phonological awareness and backward recall, whereas performance in the retrieval of the PAL task was significantly associated with rapid automatized naming, phonological awareness, and backward recall. Moreover, PAL proved to be mediating the relation between reading precursors and letter knowledge. Together, these findings indicate that the acquisition of letter knowledge may depend on a visual–verbal associative learning mechanism and that different factors contribute to the acquisition and retrieval of such visual–verbal associations. KW - Visual-verbal associative learning KW - Phonological awareness KW - Letter knowledge KW - Rapid automatized naming KW - Working memory KW - Reading Y1 - 2019 U6 - https://doi.org/10.1016/j.jecp.2018.07.006 SN - 0022-0965 SN - 1096-0457 VL - 177 SP - 86 EP - 99 PB - Elsevier CY - New York ER - TY - JOUR A1 - Engelmann, Felix A1 - Vasishth, Shravan A1 - Engbert, Ralf A1 - Kliegl, Reinhold T1 - A framework for modeling the interaction of syntactic processing and eye movement control JF - Topics in cognitive science N2 - We explore the interaction between oculomotor control and language comprehension on the sentence level using two well-tested computational accounts of parsing difficulty. Previous work (Boston, Hale, Vasishth, & Kliegl, 2011) has shown that surprisal (Hale, 2001; Levy, 2008) and cue-based memory retrieval (Lewis & Vasishth, 2005) are significant and complementary predictors of reading time in an eyetracking corpus. It remains an open question how the sentence processor interacts with oculomotor control. Using a simple linking hypothesis proposed in Reichle, Warren, and McConnell (2009), we integrated both measures with the eye movement model EMMA (Salvucci, 2001) inside the cognitive architecture ACT-R (Anderson et al., 2004). We built a reading model that could initiate short Time Out regressions (Mitchell, Shen, Green, & Hodgson, 2008) that compensate for slow postlexical processing. This simple interaction enabled the model to predict the re-reading of words based on parsing difficulty. The model was evaluated in different configurations on the prediction of frequency effects on the Potsdam Sentence Corpus. The extension of EMMA with postlexical processing improved its predictions and reproduced re-reading rates and durations with a reasonable fit to the data. This demonstration, based on simple and independently motivated assumptions, serves as a foundational step toward a precise investigation of the interaction between high-level language processing and eye movement control. KW - Sentence comprehension KW - Eye movements KW - Reading KW - Parsing difficulty KW - Working memory KW - Surprisal KW - Computational modeling Y1 - 2013 U6 - https://doi.org/10.1111/tops.12026 SN - 1756-8757 VL - 5 IS - 3 SP - 452 EP - 474 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Ghahghaei, Saeideh A1 - Linnell, Karina J. A1 - Fischer, Martin H. A1 - Dubey, Amit A1 - Davis, Robert T1 - Effects of load on the time course of attentional engagement, disengagement, and orienting in reading JF - The quarterly journal of experimental psychology N2 - We examined how the frequency of the fixated word influences the spatiotemporal distribution of covert attention during reading. Participants discriminated gaze-contingent probes that occurred with different spatial and temporal offsets from randomly chosen fixation points during reading. We found that attention was initially focused at fixation and that subsequent defocusing was slower when the fixated word was lower in frequency. Later in a fixation, attention oriented more towards the next saccadic target for high- than for low-frequency words. These results constitute the first report of the time course of the effect of load on attentional engagement and orienting in reading. They are discussed in the context of serial and parallel models of reading. KW - Attention KW - Load KW - Reading KW - Time course KW - Word frequency KW - Engagement KW - Disengagement KW - Orienting Y1 - 2013 U6 - https://doi.org/10.1080/17470218.2011.635795 SN - 1747-0218 VL - 66 IS - 3 SP - 453 EP - 470 PB - Wiley CY - Hove ER - TY - JOUR A1 - Göbel, Silke M. A1 - McCrink, Koleen A1 - Fischer, Martin H. A1 - Shaki, Samuel T1 - Observation of directional storybook reading influences young children’s counting direction JF - Journal of experimental child psychology N2 - Even before formal schooling, children map numbers onto space in a directional manner. The origin of this preliterate spatial–numerical association is still debated. We investigated the role of enculturation for shaping the directionality of the association between numbers and space, focusing on counting behavior in 3- to 5-year-old preliterate children. Two studies provide evidence that, after observing reading from storybooks (left-to-right or right-to-left reading) children change their counting direction in line with the direction of observed reading. Just observing visuospatial directional movements had no such effect on counting direction. Complementarily, we document that book illustrations, prevalent in children’s cultures, exhibit directionality that conforms to the direction of a culture’s written language. We propose that shared book reading activates spatiotemporal representations of order in young children, which in turn affect their spatial representation of numbers. KW - Counting direction KW - Cross-cultural KW - Mental number line KW - Reading KW - Spatial-numerical association KW - Preschool children Y1 - 2017 U6 - https://doi.org/10.1016/j.jecp.2017.08.001 SN - 0022-0965 SN - 1096-0457 VL - 166 SP - 49 EP - 66 PB - Elsevier CY - New York ER - TY - JOUR A1 - Hohenstein, Sven A1 - Matuschek, Hannes A1 - Kliegl, Reinhold T1 - Linked linear mixed models: A joint analysis of fixation locations and fixation durations in natural reading JF - Psychonomic bulletin & review : a journal of the Psychonomic Society N2 - The complexity of eye-movement control during reading allows measurement of many dependent variables, the most prominent ones being fixation durations and their locations in words. In current practice, either variable may serve as dependent variable or covariate for the other in linear mixed models (LMMs) featuring also psycholinguistic covariates of word recognition and sentence comprehension. Rather than analyzing fixation location and duration with separate LMMs, we propose linking the two according to their sequential dependency. Specifically, we include predicted fixation location (estimated in the first LMM from psycholinguistic covariates) and its associated residual fixation location as covariates in the second, fixation-duration LMM. This linked LMM affords a distinction between direct and indirect effects (mediated through fixation location) of psycholinguistic covariates on fixation durations. Results confirm the robustness of distributed processing in the perceptual span. They also offer a resolution of the paradox of the inverted optimal viewing position (IOVP) effect (i.e., longer fixation durations in the center than at the beginning and end of words) although the opposite (i.e., an OVP effect) is predicted from default assumptions of psycholinguistic processing efficiency: The IOVP effect in fixation durations is due to the residual fixation-location covariate, presumably driven primarily by saccadic error, and the OVP effect (at least the left part of it) is uncovered with the predicted fixation-location covariate, capturing the indirect effects of psycholinguistic covariates. We expect that linked LMMs will be useful for the analysis of other dynamically related multiple outcomes, a conundrum of most psychonomic research. KW - Linear mixed model KW - Model linkage KW - Eye movements KW - Reading Y1 - 2017 U6 - https://doi.org/10.3758/s13423-016-1138-y SN - 1069-9384 SN - 1531-5320 VL - 24 SP - 637 EP - 651 PB - Springer CY - New York ER - TY - JOUR A1 - Hyona, Jukka A1 - Yan, Ming A1 - Vainio, Seppo T1 - Morphological structure influences the initial landing position in words during reading Finnish JF - The quarterly journal of experimental psychology N2 - The preferred viewing location in words [Rayner, K. (1979). Eye guidance in reading: Fixation locations within words. Perception, 8, 21–30] during reading is near the word centre. Parafoveal word length information is utilized to guide the eyes toward it. A recent study by Yan and colleagues [Yan, M., Zhou, W., Shu, H., Yusupu, R., Miao, D., Krügel, A., & Kliegl, R. (2014). Eye movements guided by morphological structure: Evidence from the Uighur language. Cognition, 132, 181–215] demonstrated that the word’s morphological structure may also be used in saccadic targeting. The study was conducted in a morphologically rich language, Uighur. The present study aimed at replicating their main findings in another morphologically rich language, Finnish. Similarly to Yan et al., it was found that the initial fixation landed closer to the word beginning for morphologically complex than for monomorphemic words. Word frequency, saccade launch site, and word length were also found to influence the initial landing position. It is concluded that in addition to low-level factors (word length and saccade launch site), also higher level factors related to the word’s morphological structure and frequency may be utilized in saccade programming during reading. KW - Eye movements KW - Morphological structure KW - Reading KW - Saccades KW - Word frequency Y1 - 2018 U6 - https://doi.org/10.1080/17470218.2016.1267233 SN - 1747-0218 SN - 1747-0226 VL - 71 IS - 1 SP - 122 EP - 130 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Hyönä, Jukka A1 - Heikkilä, Timo T. A1 - Vainio, Seppo A1 - Kliegl, Reinhold T1 - Parafoveal access to word stem during reading BT - an eye movement study JF - Cognition : international journal of cognitive science N2 - Previous studies (Hyona, Yan, & Vainio, 2018; Yan et al., 2014) have demonstrated that in morphologically rich languages a word's morphological status is processed parafoveally to be used in modulating saccadic programming in reading. In the present parafoveal preview study conducted in Finnish, we examined the exact nature of this effect by comparing reading of morphologically complex words (a stem + two suffixes) to that of monomorphemic words. In the preview-change condition, the final 3-4 letters were replaced with other letters making the target word a pseudoword; for suffixed words, the word stem remained intact but the suffix information was unavailable; for monomorphemic words, only part of the stem was parafoveally available. Three alternative predictions were put forth. According to the first alternative, the morphological effect in initial fixation location is due to parafoveally perceiving the suffix as a highly frequent letter cluster and then adjusting the saccade program to land closer to the word beginning for suffixed than monomorphemic words. The second alternative, the processing difficulty hypothesis, assumes a morphological complexity effect: suffixed words are more complex than monomorphemic words. Therefore, the attentional window is narrower and the saccade is shorter. The third alternative posits that the effect reflects parafoveal access to the word's stem. The results for the initial fixation location and fixation durations were consistent with the parafoveal stem-access view. KW - Eye movements KW - Reading KW - Morphological complexity KW - Parafoveal processing KW - Display change KW - Initial fixation location Y1 - 2021 U6 - https://doi.org/10.1016/j.cognition.2020.104547 SN - 0010-0277 SN - 1873-7838 VL - 208 PB - Elsevier CY - Amsterdam ER -