TY - JOUR A1 - Arya, Pooja A1 - Feldmann, David A1 - Kopyshev, Alexey A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Light driven guided and self-organized motion of mesoporous colloidal particles JF - Soft matter N2 - We report on guided and self-organized motion of ensembles of mesoporous colloidal particles that can undergo dynamic aggregation or separation upon exposure to light. The forces on particles involve the phenomenon of light-driven diffusioosmosis (LDDO) and are hydrodynamic in nature. They can be made to act passively on the ensemble as a whole but also used to establish a mutual interaction between particles. The latter scenario requires a porous colloid morphology such that the particle can act as a source or sink of a photosensitive surfactant, which drives the LDDO process. The interplay between the two modes of operation leads to fascinating possibilities of dynamical organization and manipulation of colloidal ensembles adsorbed at solid-liquid interfaces. While the passive mode can be thought of to allow for a coarse structuring of a cloud of colloids, the inter-particle mode may be used to impose a fine structure on a 2D particle grid. Local flow is used to impose and tailor interparticle interactions allowing for much larger interaction distances that can be achieved with, e.g., DLVO type of forces, and is much more versatile. Y1 - 2019 U6 - https://doi.org/10.1039/c9sm02068c SN - 1744-683X SN - 1744-6848 VL - 16 IS - 5 SP - 1148 EP - 1155 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Arya, Pooja A1 - Jelken, Joachim A1 - Feldmann, David A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Light driven diffusioosmotic repulsion and attraction of colloidal particles JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - In this paper, we introduce the phenomenon of light driven diffusioosmotic long-range attraction and repulsion of porous particles under irradiation with UV light. The change in the inter-particle interaction potential is governed by flow patterns generated around single colloids and results in reversible aggregation or separation of the mesoporous silica particles that are trapped at a solid surface. The range of the interaction potential extends to several times the diameter of the particle and can be adjusted by varying the light intensity. The "fuel" of the process is a photosensitive surfactant undergoing photo-isomerization from a more hydrophobic trans-state to a rather hydrophilic cis-state. The surfactant has different adsorption affinities to the particles depending on the isomerization state. The trans-isomer, for example, tends to accumulate in the negatively charged pores of the particles, while the cis-isomer prefers to remain in the solution. This implies that when under UV irradiation cis-isomers are being formed within the pores, they tend to diffuse out readily and generate an excess concentration near the colloid's outer surface, ultimately resulting in the initiation of diffusioosmotic flow. The direction of the flow depends strongly on the dynamic redistribution of the fraction of trans- and cis-isomers near the colloids due to different kinetics of photo-isomerization within the pores as compared to the bulk. The unique feature of the mechanism discussed in the paper is that the long-range mutual repulsion but also the attraction can be tuned by convenient external optical stimuli such as intensity so that a broad variety of experimental situations for manipulation of a particle ensemble can be realized. Y1 - 2020 U6 - https://doi.org/10.1063/5.0007556 SN - 0021-9606 SN - 1089-7690 VL - 152 IS - 19 PB - American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Arya, Pooja A1 - Jelken, Joachim A1 - Lomadze, Nino A1 - Santer, Svetlana A1 - Bekir, Marek T1 - Kinetics of photo-isomerization of azobenzene containing surfactants JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry N2 - We report on photoisomerization kinetics of azobenzene containing surfactants in aqueous solution. The surfactant molecule consists of a positively charged trimethylammonium bromide head group, a hydrophobic spacer connecting via 6 to 10 CH2 groups to the azobenzene unit, and the hydrophobic tail of 1 and 3CH(2) groups. Under exposure to light, the azobenzene photoisomerizes from more stable trans- to metastable cis-state, which can be switched back either thermally in dark or by illumination with light of a longer wavelength. The surfactant isomerization is described by a kinetic model of a pseudo first order reaction approaching equilibrium, where the intensity controls the rate of isomerization until the equilibrated state. The rate constants of the trans-cis and cis-trans photoisomerization are calculated as a function of several parameters such as wavelength and intensity of light, the surfactant concentration, and the length of the hydrophobic tail. The thermal relaxation rate from cis- to trans-state is studied as well. The surfactant isomerization shows a different kinetic below and above the critical micellar concentration of the trans isomer due to steric hindrance within the densely packed micelle but does not depend on the spacer length. KW - genomic DNA conformation KW - water-interface KW - light photocontrol KW - driven KW - manipulation KW - photoisomerization KW - molecules Y1 - 2020 U6 - https://doi.org/10.1063/1.5135913 SN - 0021-9606 SN - 1089-7690 VL - 152 IS - 2 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Bekir, Marek A1 - Sharma, Anjali A1 - Umlandt, Maren A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - How to make a surface act as a micropump JF - Advanced materials interfaces N2 - In this paper, the phenomenon of light-driven diffusioosmotic (DO) long-range attractive and repulsive interactions between micro-sized objects trapped near a solid wall is investigated. The range of the DO flow extends several times the size of microparticles and can be adjusted to point towards or away from the particle by varying irradiation parameters such as intensity or wavelength of light. The "fuel" of the light-driven DO flow is a photosensitive surfactant which can be photo-isomerized between trans and cis-states. The trans-isomer tends to accumulate at the interface, while the cis-isomer prefers to stay in solution. In combination with a dissimilar photo-isomerization rate at the interface and in bulk, this yields a concentration gradient of the isomers around single particles resulting in local light-driven diffusioosmotic (l-LDDO) flow. Here, the extended analysis of the l-LDDO flow as a function of irradiation parameters by introducing time-dependent development of the concentration excess of isomers near the particle surface is presented. It is also demonstrated that the l-LDDO can be generated at any solid/liquid interface being more pronounced in the case of strongly absorbing material. This phenomenon has plenty of potential applications since it makes any type of surface act as a micropump. KW - azobenzene containing surfactant KW - light-driven diffusioosmosis KW - rate of KW - photo-isomerization Y1 - 2022 U6 - https://doi.org/10.1002/admi.202102395 SN - 2196-7350 VL - 9 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Feldmann, David A1 - Arya, Pooja A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Light-driven motion of self-propelled porous Janus particles JF - Applied physics letters N2 - We introduce a versatile mechanism of light-driven self-propelled motion applied to porous Janus-type particles. The mechanism is based on the generation of local light-driven diffusio-osmotic (l-LDDO) flow around each single porous particle subjected to suitable irradiation conditions. The photosensitivity is introduced by a cationic azobenzene containing surfactant, which undergoes a photoisomerization reaction from a more hydrophobic trans-state to a rather hydrophilic cis-state under illumination with light. The negatively charged porous silica particles are dispersed in a corresponding aqueous solution and absorb molecules in their trans-state but expel them in their cis-state. During illumination with blue light triggering both trans-cis and cis-trans isomerization at the same time, the colloids start to move due to the generation of a steady-state diffusive flow of cis-isomers out of and trans-isomers into the particle. This is because a hemi-spherical metal cap partially sealing the colloid breaks the symmetry of the otherwise radially directed local flow around the particle, leading to self-propelled motion. Janus particles exhibit superdiffusive motion with a velocity of similar to 0.5 mu m/s and a persistence length of ca. 50 mu m, confined to microchannels the direction can be maintained up to 300 mu m before rotational diffusion reverts it. Particles forming dimers of different shapes can be made to travel along circular trajectories. The unique feature of this mechanism is that the strength of self-propulsion can be tuned by convenient external optical stimuli (intensity and irradiation wavelength) such that a broad variety of experimental situations can be realized in a spatiotemporal way and in situ. Y1 - 2019 U6 - https://doi.org/10.1063/1.5129238 SN - 0003-6951 SN - 1077-3118 VL - 115 IS - 26 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Feldmann, David A1 - Maduar, Salim R. A1 - Santer, Mark A1 - Lomadze, Nino A1 - Vinogradova, Olga I. A1 - Santer, Svetlana T1 - Manipulation of small particles at solid liquid interface: light driven diffusioosmosis JF - Scientific reports N2 - The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans-and cis-isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area. Y1 - 2016 U6 - https://doi.org/10.1038/srep36443 SN - 2045-2322 VL - 6 SP - 25083 EP - 25091 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Feldmann, David A1 - Maduar, Salim R. A1 - Santer, Mark A1 - Lomadze, Nino A1 - Vinogradova, Olga I. A1 - Santer, Svetlana T1 - Manipulation of small particles at solid liquid interface BT - light driven diffusioosmosis JF - Scientific reports N2 - The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area. KW - genomic DNA conformation KW - photosensitive surfactants KW - optical manipulation KW - photocontrol KW - azobenzene KW - films KW - gradients KW - transport KW - tracking KW - brushes Y1 - 2016 U6 - https://doi.org/10.1038/srep36443 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - GEN A1 - Feldmann, David A1 - Maduar, Salim R. A1 - Santer, Mark A1 - Lomadze, Nino A1 - Vinogradova, Olga I. A1 - Santer, Svetlana T1 - Manipulation of small particles at solid liquid interface BT - light driven diffusioosmosis N2 - The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 293 KW - azobenzene KW - brushes KW - films KW - genomic DNA conformation KW - gradients KW - optical manipulation KW - photocontrol KW - photosensitive surfactants KW - tracking KW - transport Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-100338 ER - TY - JOUR A1 - Jelken, Joachim A1 - Pandiyarajan, Chinnayan Kannan A1 - Genzer, Jan A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Fabrication of flexible hydrogel sheets featuring periodically spaced circular holes with continuously adjustable size in realtime JF - ACS applied materials & interfaces N2 - We report on the formation of stimuli-responsive structured hydrogel thin films whose pattern geometry can be adjusted on demand and tuned reversibly by varying solvent quality or by changing temperature. The hydrogel films, similar to 100 nm in thickness, were prepared by depositing layers of random copolymers comprising N-isopropylacrylamide and ultraviolet (UV)-active methacryloyloxybenzophenone units onto solid substrates. A two-beam interference pattern technique was used to cross-link the selected areas of the film; any unreacted material was extracted using ethanol after UV light-assisted cross-linking. In this way, we produced nanoholes, perfectly ordered structures with a narrow size distribution, negligible tortuosity, adjustable periodicity, and a high density. The diameter of the circular holes ranged from a few micrometers down to several tens of nanometers; the hole periodicity could be adjusted readily by changing the optical period of the UV interference pattern. The holes were reversibly closed and opened by swelling/deswelling the polymer networks in the presence of ethanol and water, respectively, at various temperatures. The reversible regulation of the hole diameter can be repeated many times within a few seconds. The hydrogel sheet with circular holes periodically arranged may also be transferred onto different substrates and be employed as tunable templates for the deposition of desired substances. KW - photosensitive polymers KW - PNIPAm KW - hydrogels KW - UV cross-linking KW - stimuli-responsive structured polymer films KW - azobenzene-containing molecules Y1 - 2018 U6 - https://doi.org/10.1021/acsami.8b09580 SN - 1944-8244 VL - 10 IS - 36 SP - 30844 EP - 30851 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kopyshev, Alexey A1 - Galvin, Casey J. A1 - Genzer, Jan A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Opto-mechanical scission of polymer chains in photosensitive diblock-copolymer brushes JF - Langmuir N2 - In this paper we report on an opto-mechanical scission of polymer chains within photosensitive diblock-copolymer brushes grafted to flat solid substrates. We employ surface-initiated polymerization of methylmethacrylate (MMA) and t-butyl methacrylate (tBMA) to grow diblock-copolymer brushes of poly(methylmethacrylate-b-t-butyl methacrylate) following the atom transfer polymerization (ATRP) scheme. After the synthesis, deprotection of the PtBMA block yields poly(methacrylic acid) (PMAA). To render PMMA-b-PMAA copolymers photosensitive, cationic azobenzene containing surfactants are attached to the negatively charged outer PMAA block. During irradiation with an ultraviolet (UV) interference pattern, the extent of photoisomerization of the azobenzene groups varies spatially and results in a topography change of the brush, i.e., formation of surface relief gratings (SRG). The SRG formation is accompanied by local rupturing of the polymer chains in areas from which the polymer material recedes. This opto-mechanically induced scission of the polymer chains takes place at the interfaces of the two blocks and depends strongly on the UV irradiation intensity. Our results indicate that this process may be explained by employing classical continuum fracture mechanics, which might be important for tailoring the phenomenon for applying it to poststructuring of polymer brushes. Y1 - 2013 U6 - https://doi.org/10.1021/la403241t SN - 0743-7463 VL - 29 IS - 45 SP - 13967 EP - 13974 PB - American Chemical Society CY - Washington ER -