TY - JOUR A1 - Finke, Hannah A1 - Winkelbeiner, Nicola Lisa A1 - Lossow, Kristina A1 - Hertel, Barbara A1 - Wandt, Viktoria Klara Veronika A1 - Schwarz, Maria A1 - Pohl, Gabriele A1 - Kopp, Johannes Florian A1 - Ebert, Franziska A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - Effects of a Cumulative, Suboptimal Supply of Multiple Trace Elements in Mice BT - trace element status, genomic stability, inflammation, and epigenetics JF - Molecular nutrition & food research N2 - Scope: Trace element (TE) deficiencies often occur accumulated, as nutritional intake is inadequate for several TEs, concurrently. Therefore, the impact of a suboptimal supply of iron, zinc, copper, iodine, and selenium on the TE status, health parameters, epigenetics, and genomic stability in mice are studied. Methods and results: Male mice receive reduced or adequate amounts of TEs for 9 weeks. The TE status is analyzed mass‐spectrometrically in serum and different tissues. Furthermore, gene and protein expression of TE biomarkers are assessed with focus on liver. Iron concentrations are most sensitive toward a reduced supply indicated by increased serum transferrin levels and altered hepatic expression of iron‐related genes. Reduced TE supply results in smaller weight gain but higher spleen and heart weights. Additionally, inflammatory mediators in serum and liver are increased together with hepatic genomic instability. However, global DNA (hydroxy)methylation is unaffected by the TE modulation. Conclusion: Despite homeostatic regulation of most TEs in response to a low intake, this condition still has substantial effects on health parameters. It appears that the liver and immune system react particularly sensitive toward changes in TE intake. The reduced Fe status might be the primary driver for the observed effects. Y1 - 2020 U6 - https://doi.org/10.1002/mnfr.202000325 SN - 1613-4125 VL - 64 IS - 16 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Nicolai, Merle Marie A1 - Weishaupt, Ann-Kathrin A1 - Baesler, Jessica A1 - Brinkmann, Vanessa A1 - Wellenberg, Anna A1 - Winkelbeiner, Nicola Lisa A1 - Gremme, Anna A1 - Aschner, Michael A1 - Fritz, Gerhard A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans JF - International Journal of Molecular Sciences N2 - Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms. KW - manganese KW - oxidative stress KW - DNA repair KW - DNA damage response KW - Caenorhabditis elegans Y1 - 2021 U6 - https://doi.org/10.3390/ijms222010905 SN - 1422-0067 VL - 22 IS - 20 PB - MDPI CY - Basel ER - TY - GEN A1 - Nicolai, Merle Marie A1 - Weishaupt, Ann-Kathrin A1 - Baesler, Jessica A1 - Brinkmann, Vanessa A1 - Wellenberg, Anna A1 - Winkelbeiner, Nicola Lisa A1 - Gremme, Anna A1 - Aschner, Michael A1 - Fritz, Gerhard A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1173 KW - manganese KW - oxidative stress KW - DNA repair KW - DNA damage response KW - Caenorhabditis elegans Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523275 SN - 1866-8372 IS - 1173 ER -