TY - JOUR A1 - Wang, Li A1 - Razzaq, Muhammad Yasar A1 - Rudolph, Tobias A1 - Heuchel, Matthias A1 - Nöchel, Ulrich A1 - Mansfeld, Ulrich A1 - Jiang, Yi A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Reprogrammable, magnetically controlled polymeric nanocomposite actuators JF - Material horizons N2 - Soft robots and devices with the advanced capability to perform adaptive motions similar to that of human beings often have stimuli-sensitive polymeric materials as the key actuating component. The external signals triggering the smart polymers’ actuations can be transmitted either via a direct physical connection between actuator and controlling unit (tethered) or remotely without a connecting wire. However, the vast majority of such polymeric actuator materials are limited to one specific type of motion as their geometrical information is chemically fixed. Here, we present magnetically driven nanocomposite actuators, which can be reversibly reprogrammed to different actuation geometries by a solely physical procedure. Our approach is based on nanocomposite materials comprising spatially segregated crystallizable actuation and geometry determining units. Upon exposure to a specific magnetic field strength the actuators’ geometric memory is erased by the melting of the geometry determining units allowing the implementation of a new actuator shape. The actuation performance of the nanocomposites can be tuned and the technical significance was demonstrated in a multi-cyclic experiment with several hundreds of repetitive free-standing shape shifts without losing performance. Y1 - 2018 U6 - https://doi.org/10.1039/c8mh00266e SN - 2051-6347 SN - 2051-6355 VL - 5 IS - 5 SP - 861 EP - 867 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Yan, Wan A1 - Fang, Liang A1 - Nöchel, Ulrich A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Investigating the roles of crystallizable and glassy switching segments within multiblock copolymer shape-memory materials JF - MRS Advances N2 - The variation of the molecular architecture of multiblock copolymers has enabled the introduction of functional behaviour and the control of key mechanical properties. In the current study, we explore the synergistic relationship of two structural components in a shape-memory material formed of a multiblock copolymer with crystallizable poly(epsilon-caprolactone) and crystallizable polyfoligo(3S-iso-butylmorpholine-2,5-dione) segments (PCL-PIBMD). The thermal and structural properties of PCL-PIBMD films were compared with PCI.-PU and PMMD-PU investigated by means of DSC, SAXS and WARS measurements. The shape-memory properties were quantified by cyclic, thermomechanical tensile tests, where deformation strains up to 900% were applied for programming PCL-PIBMD films at 50 degrees C. Toluene vapor treatment experiments demonstrated that the temporary shape was fixed mainly by glassy PIBMD domains at strains lower than 600% with the PCL contribution to fixation increasing to 42 +/- 2% at programming strains of 900% This study into the shape-memory mechanism of PCL-PIBMD provides insight into the structure function relation in multiblock copolymers with both crystallizable and glassy switching segments. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.590 SN - 2059-8521 VL - 3 IS - 63 SP - 3741 EP - 3749 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Yan, Wan A1 - Rudolph, Tobias A1 - Nöchel, Ulrich A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Reversible actuation of thermoplastic multiblock copolymers with overlapping thermal transitions of crystalline and glassy domains JF - Macromolecules : a publication of the American Chemical Society N2 - Polymeric materials possessing specific features like programmability, high deformability, and easy processability are highly desirable for creating modern actuating systems. In this study, thermoplastic shape-memory polymer actuators obtained by combining crystallizable poly(epsilon-caprolactone) (PCL) and poly(3S-isobutylmorpholin-2,5-dione) (PIBMD) segments in multiblock copolymers are described. We designed these materials according to our hypothesis that the confinement of glassy PIBMD domains present at the upper actuation temperature contribute to the stability of the actuator skeleton, especially at large programming strains. The copolymers have a phase-segregated morphology, indicated by the well-separated melting and glass transition temperatures for PIBMD and PCL, but possess a partially overlapping T-m of PCL and T-g of PIBMD in the temperature interval from 40 to 60 degrees C. Crystalline PIBMD hard domains act as strong physical netpoints in the PIBMD-PCL bulk material enabling high deformability (up to 2000%) and good elastic recoverability (up to 80% at 50 degrees C above T-m,T-PCL). In the programmed thermoplastic actuators a high content of crystallizable PCL actuation domains ensures pronounced thermoreversible shape changes upon repetitive cooling and heating. The programmed actuator skeleton, composed of PCL crystals present at the upper actuation temperature T-high and the remaining glassy PIBMD domains, enabled oriented crystallization upon cooling. The actuation performance of PIBMD-PCL could be tailored by balancing the interplay between actuation and skeleton, but also by varying the quantity of crystalline PIBMD hard domains via the copolymer composition, the applied programming strain, and the choice of T-high. The actuator with 17 mol% PIBMD showed the highest reversible elongation of 11.4% when programmed to a strain of 900% at 50 degrees C. It is anticipated that the presented thermoplastic actuator materials can be applied as modern compression textiles. Y1 - 2018 U6 - https://doi.org/10.1021/acs.macromol.8b00322 SN - 0024-9297 SN - 1520-5835 VL - 51 IS - 12 SP - 4624 EP - 4632 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhang, Quanchao A1 - Rudolph, Tobias A1 - Benitez, Alejandro J. A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes JF - Smart materials and structures N2 - Fibrous membranes capable of dynamically responding to external stimuli are highly desirable in textiles and biomedical materials, where adaptive behavior is required to accommodate complex environmental changes. For example, the creation of fabrics with temperature-dependent moisture permeability or self-regulating membranes for air filtration is dependent on the development of materials that exhibit a reversible stimuli-responsive pore size change. Here, by imbuing covalently crosslinked poly(ε-caprolactone) (cPCL) fibrous meshes with a reversible bidirectional shape-memory polymer actuation (rbSMPA) we create a material capable of temperature-controlled changes in porosity. Cyclic thermomechanical testing was used to characterize the mechanical properties of the meshes, which were composed of randomly arranged microfibers with diameters of 2.3 ± 0.6 μm giving an average pore size of approx. 10 μm. When subjected to programming strains of εm = 300% and 100% reversible strain changes of εʹrev = 22% ± 1% and 6% ± 1% were measured, with switching temperature ranges of 10 °C–30 °C and 45 °C–60 °C for heating and cooling, respectively. The rbSMPA of cPCL fibrous meshes generated a microscale reversible pore size change of 11% ± 3% (an average of 1.5 ± 0.6 μm), as measured by scanning electron microscopy. The incorporation of a two-way shape-memory actuation capability into fibrous meshes is anticipated to advance the development and application of smart membrane materials, creating commercially viable textiles and devices with enhanced performance and novel functionality. KW - reversible shape-memory effect KW - fiber meshes KW - electrospinning Y1 - 2019 U6 - https://doi.org/10.1088/1361-665X/ab10a1 SN - 0964-1726 SN - 1361-665X VL - 28 IS - 5 PB - IOP Publ. Ltd. CY - Bristol ER -