TY - THES A1 - AL-Rawi, Shadha T1 - Biochemical studies to determine the role of Early Starvation 1 (ESV1) protein and its homologue Like-Early Starvation 1 (LESV) during starch degradation N2 - Depending on the biochemical and biotechnical approach, the aim of this work was to understand the mechanism of protein-glucan interactions in regulation and control of starch degradation. Although starch degradation starts with the phosphorylation process, the mechanisms by which this process is controlling and adjusting starch degradation are not yet fully understood. Phosphorylation is a major process performed by the two dikinases enzymes α-glucan, water dikinase (GWD) and phosphoglucan water dikinase (PWD). GWD and PWD enzymes phosphorylate the starch granule surface; thereby stimulate starch degradation by hydrolytic enzymes. Despite these important roles for GWD and PWD, so far the biochemical processes by which these enzymes are able to regulate and adjust the rate of phosphate incorporation into starch during the degradation process haven‘t been understood. Recently, some proteins were found associated with the starch granule. Two of these proteins are named Early Starvation Protein 1 (ESV1) and its homologue Like-Early Starvation Protein 1 (LESV). It was supposed that both are involved in the control of starch degradation, but their function has not been clearly known until now. To understand how ESV1 and LESV-glucan interactions are regulated and affect the starch breakdown, it was analyzed the influence of ESV1 and LESV proteins on the phosphorylating enzyme GWD and PWD and hydrolysing enzymes ISA, BAM, and AMY. However, the analysis determined the location of LESV and ESV1 in the chloroplast stroma of Arabidopsis. Mass spectrometry data predicted ESV1and LESV proteins as a product of the At1g42430 and At3g55760 genes with a predicted mass of ~50 kDa and ~66 kDa, respectively. The ChloroP program predicted that ESV1 lacks the chloroplast transit peptide, but it predicted the first 56 amino acids N-terminal region as a chloroplast transit peptide for LESV. Usually, the transit peptide is processed during transport of the proteins into plastids. Given that this processing is critical, two forms of each ESV1 and LESV were generated and purified, a full-length form and a truncated form that lacks the transit peptide, namely, (ESV1and tESV1) and (LESV and tLESV), respectively. Both protein forms were included in the analysis assays, but only slight differences in glucan binding and protein action between ESV1 and tESV1 were observed, while no differences in the glucan binding and effect on the GWD and PWD action were observed between LESV and tLESV. The results revealed that the presence of the N-terminal is not massively altering the action of ESV1 or LESV. Therefore, it was only used the ESV1 and tLESV forms data to explain the function of both proteins. However, the analysis of the results revealed that LESV and ESV1 proteins bind strongly at the starch granule surface. Furthermore, not all of both proteins were released after their incubation with starches after washing the granules with 2% [w/v] SDS indicates to their binding to the deeper layers of the granule surface. Supporting of this finding comes after the binding of both proteins to starches after removing the free glucans chains from the surface by the action of ISA and BAM. Although both proteins are capable of binding to the starch structure, only LESV showed binding to amylose, while in ESV1, binding was not observed. The alteration of glucan structures at the starch granule surface is essential for the incorporation of phosphate into starch granule while the phosphorylation of starch by GWD and PWD increased after removing the free glucan chains by ISA. Furthermore, PWD showed the possibility of starch phosphorylation without prephosphorylation by GWD. Biochemical studies on protein-glucan interactions between LESV or ESV1 with different types of starch showed a potentially important mechanism of regulating and adjusting the phosphorylation process while the binding of LESV and ESV1 leads to altering the glucan structures of starches, hence, render the effect of the action of dikinases enzymes (GWD and PWD) more able to control the rate of starch degradation. Despite the presence of ESV1 which revealed an antagonistic effect on the PWD action as the PWD action was decreased without prephosphorylation by GWD and increased after prephosphorylation by GWD (Chapter 4), PWD showed a significant reduction in its action with or without prephosphorylation by GWD in the presence of ESV1 whether separately or together with LESV (Chapter 5). However, the presence of LESV and ESV1 together revealed the same effect compared to the effect of each one alone on the phosphorylation process, therefore it is difficult to distinguish the specific function between them. However, non-interactions were detected between LESV and ESV1 or between each of them with GWD and PWD or between GWD and PWD indicating the independent work for these proteins. It was also observed that the alteration of the starch structure by LESV and ESV1 plays a role in adjusting starch degradation rates not only by affecting the dikinases but also by affecting some of the hydrolysing enzymes since it was found that the presence of LESV and ESV1leads to the reduction of the action of BAM, but does not abolish it. N2 - Ziel dieser Arbeit war es, den Mechanismus der Protein-Glucan-Wechselwirkungen bei der Regulation und Kontrolle des Stärkeabbaus zu verstehen. Der Stärkeabbau beginnt mit dem Phosphorylierungsprozess, der von den beiden Dikinasen, der a-Glucan, Wasserdikinase (GWD) und der Phosphoglucanwasserdikinase (PWD) durchgeführt wird. Kürzlich wurden einige Proteine gefunden, die mit dem Stärkegranulum assoziiert sind. Zwei dieser Proteine heißen Early Starvation 1 (ESV1) und das Homolog Like-Early Starvation (LESV), Es wurde vorgeschlagen, dass beide an der Kontrolle des Stärkeabbaus beteiligt sind, aber ihre Funktion ist bisher nicht bekannt. Um zu verstehen, wie ESV1- und LESV-Glucan-Wechselwirkungen reguliert werden und den Stärkeabbau beeinflussen, wurde der Einfluss der beiden Proteine auf die Phosphorylierungsenzyme GWD und PWD, sowie die Hydrolasen isoamylase, betaamylase, und alpha-amylase ntersucht. Dabei ergab die Analyse, dass LESV und ESV1 nicht nur stark an der Oberfläche, sondern auch in den tieferen Schichten der Stärkegranula binden. Obwohl beide Proteine in der Lage sind, an die Stärkestruktur zu binden, zeigte nur LESV eine Bindung an Amylose, während für ESV1 keine Bindung beobachtet werden konnte. Die Veränderung der Glucanstrukturen an der Oberfläche der Stärkekörner ist für den Einbau von Phosphat wesentlich, so nahm beispielsweise die Phosphorylierung der Stärke durch GWD und PWD nach Entfernung der freien Glucanketten mittels ISA zu. Darüber hinaus konnte ebenso gezeigt werden, dass PWD auch ohne eine Präphosphorylierung durch GWD die Glucosyleinheiten innerhalb der Stärke phosphorylieren kann. Die Bindung von LESV und ESV1 führt zu einer Veränderung der Glucanstrukturen von Stärken, wodurch die Aktivität der Dikinasen (GWD und PWD) und somit die Geschwindigkeit des Stärkeabbaus wahrscheinlich besser gesteuert werden kann. Es wurden keine Wechselwirkungen zwischen LESV und ESV1 oder zwischen jedem von ihnen mit GWD und PWD oder zwischen GWD und PWD festgestellt, was auf die unabhängige Arbeit von diesen Proteinen hinweist. Es wurde auch beobachtet, dass die Modifikation der Stärkestruktur durch LESV und ESV1 eine Rolle bei der Anpassung der Stärkeabbauraten spielt, nicht nur durch Beeinflussung der Dikinasen, sondern auch durch die Beeinflussung einiger hydrolysierender Enzyme wie BAM. Den so zeigte die Amylase eine eindeutige Reduktion ihrer katalytischen Wirkung in Präsenz von LESV und ESV1. Daraus resumierend kann davon ausgegangen werden, dass die beiden Proteine ESV1 und LESV für die Feinregulation des Stärkeabbaus von höchster Relevanz sind. T2 - Biochemische Studien zur Bestimmung der Rolle des ESV1-Proteins (Early Starvation 1) und seines Homologen Like-Early Starvation 1 (LESV) während des Stärkeabbaus KW - Early starvation protein KW - Like-Early starvation protein KW - Glucan water dikinase KW - Phosphoglucan water dikinase KW - Phosphorylation process KW - Starch metabolism KW - Early Starvation 1 KW - Glucan-Wasser-Dikinase KW - Like-Early Starvation 1 KW - Phosphoglucan-Wasser-Dikinase KW - Phosphorylierungsprozess KW - Stärkestoffwechsel Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483956 ER - TY - THES A1 - Alirezaeizanjani, Zahra T1 - Movement strategies of a multi-mode bacterial swimmer N2 - Bacteria are one of the most widespread kinds of microorganisms that play essential roles in many biological and ecological processes. Bacteria live either as independent individuals or in organized communities. At the level of single cells, interactions between bacteria, their neighbors, and the surrounding physical and chemical environment are the foundations of microbial processes. Modern microscopy imaging techniques provide attractive and promising means to study the impact of these interactions on the dynamics of bacteria. The aim of this dissertation is to deepen our understanding four fundamental bacterial processes – single-cell motility, chemotaxis, bacterial interactions with environmental constraints, and their communication with neighbors – through a live cell imaging technique. By exploring these processes, we expanded our knowledge on so far unexplained mechanisms of bacterial interactions. Firstly, we studied the motility of the soil bacterium Pseudomonas putida (P. putida), which swims through flagella propulsion, and has a complex, multi-mode swimming tactic. It was recently reported that P. putida exhibits several distinct swimming modes – the flagella can push and pull the cell body or wrap around it. Using a new combined phase-contrast and fluorescence imaging set-up, the swimming mode (push, pull, or wrapped) of each run phase was automatically recorded, which provided the full swimming statistics of the multi-mode swimmer. Furthermore, the investigation of cell interactions with a solid boundary illustrated an asymmetry for the different swimming modes; in contrast to the push and pull modes, the curvature of runs in wrapped mode was not affected by the solid boundary. This finding suggested that having a multi-mode swimming strategy may provide further versatility to react to environmental constraints. Then we determined how P. putida navigates toward chemoattractants, i.e. its chemotaxis strategies. We found that individual run modes show distinct chemotactic responses in nutrition gradients. In particular, P. putida cells exhibited an asymmetry in their chemotactic responsiveness; the wrapped mode (slow swimming mode) was affected by the chemoattractant, whereas the push mode (fast swimming mode) was not. These results can be seen as a starting point to understand more complex chemotaxis strategies of multi-mode swimmers going beyond the well-known paradigm of Escherichia coli, that exhibits only one swimming mode. Finally we considered the cell dynamics in a dense population. Besides physical interactions with their neighbors, cells communicate their activities and orchestrate their population behaviors via quorum-sensing. Molecules that are secreted to the surrounding by the bacterial cells, act as signals and regulate the cell population behaviour. We studied P. putida’s motility in a dense population by exposing the cells to environments with different concentrations of chemical signals. We found that higher amounts of chemical signals in the surrounding influenced the single-cell behaviourr, suggesting that cell-cell communications may also affect the flagellar dynamics. In summary, this dissertation studies the dynamics of a bacterium with a multi-mode swimming tactic and how it is affected by the surrounding environment using microscopy imaging. The detailed description of the bacterial motility in fundamental bacterial processes can provide new insights into the ecology of microorganisms. N2 - Bakterien gehören zu den am weitesten verbreiteten Mikroorganismen mit einer essentiellen Bedeutung in vielen biologischen und okologischen Prozessen. Bakterien können entweder als unabhängige Individuen oder in organisierten Gemeinschaften leben. Auf dem Level einer einzelnen Zelle sind Interaktionen zwischen Bakterien, ihren Nachbarn und des umgebenden physikalischen und chemischen Umwelt die Grundlage von mikrobiellen Prozessen. Mikroskopische Bildgebungs techniken bieten attraktive und vielversprechende Möglichkeiten den Einfluß dieses Interaktionen auf die Dynamik von Bakterien zu untersuchen. Das ziel dieser Dissertation ist es, vier fundamentale bakterielle Prozesse mittels Lebendzell-Mikroskopie besser zu verstehen – die Einzelzellbewegung, die Chemotaxis, die Wechselwirkungen der Bakterien mit der Umgebung und ihre Kommunikation mit Nachbarzellen. Durch die Untersuchung dieser Prozesse konnten wir das Wissen über die bisher ungeklärten Mechanismen der bakteriellen Interaktionen erweitern. Als Erstes untersuchten wir die Fortbewegung des Bodenbakteriums Pseudomonas putida (P. putida), welches mit Hilfe eines Flagellenantriebs schwimmt und eine komplexe multi-mode Schwimmstrategie aufweist. Kürzlich wurde veröffentlich, dass P. putida mehrere unterschiedliche Schwimmmodi besitzt – die Flagellen können den Zellkörper nach vorne drücken (push) oder ziehen (pull) oder sich um ihn wickeln (wrap). Unter Verwendung einer neuen Methode, der kombinierten Phasenkontrast- und Fluoreszenzmikroskopie, konnten die Schwimmmodi (push, pull oder wrap) für jede Schwimmphase automatisch aufgenommen werden, was eine vollständige Schwimmstatistik des multi-mode Schwimmers lieferte. Weiterhin zeigte die Untersuchung von Interaktionen mit einer festen Grenzschicht eine Asymmetrie bezüglich der verschiedenen Schwimmmodi. Im Gegensatz zu push und pull, der wrapped Modus nicht durch die feste Grenzschicht beeinflusst. Diese Ergebnisse lassen vermuten, dass eine multi-mode Schwimmstrategie dem Bakterium weitere möglichkeiten bietet, sich an die Umgebungsbedingungen anzupassen. Als Nächstes haben wir bestimmt, wie P. putida in Richtung eines Lockstoffes navigiert (Chemotaxis). Wir haben herausgefunden, dass einzelne Schwimmmodi eine unterschiedliche chemotaktische Antwort in Nährstoff-gradienten zeigen. P. putida besitzt eine Asymmetrie in seiner chemotaktischen Ansprechbarkeit: der wrapped Modus (langsamer Schwimmmodus) wird vom Lockstoff beeinflusst, der push Modus (schneller Schwimmmodus) hingegen nicht. Diese Ergebnisse können als Ausgangspunkt gesehen werden, um komplexere Chemotaxisstrategien von mulit-mode Schwimmern zu verstehen, die über das bekannte Musterbeispiel Escherichia coli hinaus gehen, des nur einen schwimmmodus aufweist. schließend haben wir die Zelldynamik in dichten Kulturen untersucht. Neben den physikalischen Interaktionen mit den Nachbarzellen, kommunizieren zellen ihre Aktivitäten und organisieren ihr Populationsverhalten über quorum sensing. Moleküle, die von den Bakterienzellen in die Umgebung sekretiert werden, wirken als Signale und regulieren das Verhalten der Zellpopulation. Wir haben die Bewegung von P. putida in hoher Zelldichte untersucht, indem wir die Zellen unterschiedlichen Konzentrationen dieses Moleküle aussetzten. Wir haben festgestellt, dass größere Mengen dieser signalstoffe in der Umgebung die Einzelzelldynamik beeinflusst haben. Dies lässt uns vermuten, dass sich die Zell-Zell-Kommunikation auch auf die Flagellendynamik auswirkt. Zusammenfassend zeigt diese Dissertation mittels Mikroskopie die Dynamik von einem Bakterium mit multi-mode Schwimmstrategie und wie die umgebende Umwelt diese Dynamik beeinflußt. Die detaillierte Beschreibung der Bakterienmotilität in grundlegenden bakteriellen Prozessen kann neue Erkenntnisse für die ökologie der Mikroorganismen bringen. T2 - Bewegungsstrategien von bakteriellenmulti-mode Schwimmern KW - Single-cell motility KW - Einzelzellbewegung KW - Chemotaxis KW - Chemotaxis KW - Flagellen KW - Flagella KW - Bacteria KW - Bakterien Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475806 ER - TY - THES A1 - Aneley, Gedif Mulugeta T1 - Drought tolerance prediction of potato by automatic phenotyping of morphological and physiological traits T1 - Vorhersage von Trockentoleranz in Kartoffel durch automatische Phänotypisierung morphologischer und physiologischer Eigenschaften N2 - Potato is the 4th most important food crop in the world. Especially in tropical and sub-tropical potato production, drought is a yield limiting factor. Potato is sensitive to water stress. Potato yield loss under water stress could be reduced by using tolerant varieties and adjusted agronomic practices. Direct selection for yield under water-stressed conditions requires long selection cycles. Thus, identification of markers for marker-assisted selection may speed up breeding. The objective of this thesis is to identify morphological markers for drought tolerance by continuously monitoring plant growth and canopy temperature with an automatic phenotyping system. The phenotyping was performed in drought-stress experiments that were conducted in population A with 64 genotypes and population B with 21 genotypes in the screenhouse in 2015 and 2016 (population A) and in 2017 and 2018 (population B). Drought tolerance was quantified as deviation of the relative tuber starch yield from the experimental median (DRYM) and parent median (DRYMp). Relative tuber starch yield is starch yield under drought stress relative to the average starch yield of the respective cultivar under control conditions in the same experiment. The specific DRYM value was calculated based on the yield data of the same experiment or the global DRYM that was calculated from yield data derived from data combined over yeas of respective population or across multiple experiments including VALDIS and TROST experiments (2011-2016). Analysis of variance found a significant effect of genotype on DRYM indicating that the tolerance variation required for marker identification was given in both populations. Canopy growth was monitored continuously six times a day over five to ten weeks by a laser scanner system and yielded information on leaf area, plant height and leaf angle for population A and additionally on leaf inclination and light penetration depth for population B. Canopy temperature was measured 48 times a day over six to seven weeks by infrared thermometry in population B. From the continuous IRT surface temperature data set, the canopy temperature for each plant was selected by matching the time stamp of the IRT data with laser scanner data. Mean, maximum, range and growth rate values were calculated from continuous laser scanner measurements of respective canopy parameters. Among the canopy parameters, the maximum and mean values in long-term stress conditions showed better correlation with DRYM values calculated in the same experiment than growth rate and diurnal range values. Therefore, drought tolerance index prediction was done from maximum and mean values of canopy parameters. The tolerance index in specific experiment condition was linearly predicted by simple regression model from different single canopy parameters under long-term stress condition in population A (2016) and population B (2017 and 2018). Among the canopy parameters maximum light penetration depth (2017), mean leaf angle (2017, 2018, and 2016), mean leaf inclination or mean canopy temperature depression (2017 and 2018), maximum plant height (2017) were selected as tolerance predictors. However, no single parameters were sufficient to predict DRYM. Therefore, several independent parameters were integrated in a multiple regression model. In multiple regression model, specific experiment DRYM values in population A was predicted from mean leaf angle (2016). In population B, specific tolerance could be predicted from maximum light penetration depth and mean leaf inclination (2017) and mean leaf inclination (2018) or mean canopy temperature depression and mean leaf angle (2018). In data combined over season of population A, the multiple linear regression model selected maximum plant height and mean leaf angle as tolerance predictor. In Population B, mean leaf inclination was selected as tolerance predictor. However, in population A, the variation explained by the final model was too low. Furthermore, the average tolerances respective to parent median (2011-2018) across FGH plants or all plants (FGH and field) were predicted from maximum plant height (population A) and maximum plant height and mean leaf inclination (population B). Altogether, canopy parameters could be used as markers for drought tolerance. Therefore, water stress breeding in potato could be speed up through using leaf inclination, light penetration depth, plant height and canopy temperature depression as markers for drought tolerance, especially in long-term stress conditions. N2 - Die Kartoffel ist die viertwichtigste Nahrungspflanze der Welt. Besonders in den Tropen und Subtropen ist Trockenheit ein ertragsbegrenzender Faktor für die Kartoffelproduktion. Kartoffeln sind empfindlich gegen Trockenstress. Der Ertragsverlust von Kartoffeln unter Wasserstress könnte durch die Verwendung von toleranten Sorten und angepasste Anbaupraxis verringert werden. Die direkte Selektion für Ertrag unter Trockenstressbedingungen erfordert lange Selektionszyklen. Daher kann die Identifizierung von Markern für marker-assisted Selektion die Züchtung beschleunigen. Das Ziel dieser Arbeit ist es, morphologische Marker für Trockentoleranz mit Hilfe von kontinuierlichen Messungen von Pflanzenwachstum und Bestandstemperatur mittels automatischer Phänotypisierung zu identifizieren. Die Phänotypisierung wurde in Trockenstressexperimenten durchgeführt, welche mit 64 Genotypen aus Population A und 21 Genotypen aus Population B in einem Foliengewächshaus in 2015 und 2016 (Population A) bzw. 2017 und 2018 (Population B) stattgefunden haben. Die Trockentoleranz wurde als Abweichung des relativen Stärkeertrags der Knollen vom experimentellen Median (DRYM) und dem Elternmedian (DRYMp) quantifiziert. Der relative Stärkeertrag ist der Stärkeertrag unter Trockenstress relativ zum mittleren Stärkeertrag der Sorte unter optimaler Bewässerung im gleichen Experiment. Der spezifische DRYM wurde auf der Basis der Ertragsdaten des gleichen Experiments berechnet oder der globale DRYM wurde auf der Basis der Ertragsdaten kombinierter Experimente aus mehreren Jahren für die gleiche Population oder für mehrere Experimente auch aus VALDIS und TROST (2011-2016) berechnet. Die Varianzanalyse zeigte einen signifikanten Effekt des Genotyps auf DRYM, so dass die für die Identifizierung von Markern erforderliche Toleranzvariation in beiden Populationen gegeben war. Die Bestandsentwicklung wurde mit einem Laserscanner-System kontinuierlich sechsmal täglich über fünf bis zehn Wochen gemessen und lieferte Informationen zu Blattfläche, Pflanzenhöhe und Blattwinkel für Population A sowie zusätzlich Blattneigung und Lichteinfalltiefe für Population B. Die Oberflächentemperatur wurde 48mal täglich für sechs bis sieben Wochen mittels Infrarot-Thermometrie in Population B gemessen. Aus dem kontinuierlichen IRT-Oberflächentemperatur-Datensatz wurde die Oberflächentemperatur jeder Pflanze bestimmt, indem die Zeitstempel der IRT-Daten mit denen der Laserscannerdaten abgeglichen wurden. Mittelwert, Maximum, Streubereich (range) und Wachstumsrate wurden für die Bestandsparameter der Laserscannermessungen bestimmt. Unter den Bestandsparametern zeigten die Maxima und Mittelwerte unter Langzeitstress die bessere Korrelation mit dem Toleranzindex DRYM, der aus dem gleichen Experiment berechnet wurde, als die Wachstumsrate und der Streubereich. Die Trockentoleranzprognose wurde daher aus den Maxima und Mittelwerte der Bestandsparameter gemacht. Der Toleranzindex spezifischer Versuche wurde linear mit einem einfachen Regressionsmodell aus verschiedenen einzelnen Bestandparameters unter Langzeitstressbedingungen in Population A (2016) und Population (B) (2017 und 2018) vorhergesagt. Toleranz-Prognoseparameter wurden unter den Bestandparametern maximale Lichteinfalltiefe (2017), mittlerer Blattwinkel (2017, 2018 und 2016), mittlere Blattneigung und mittlere Oberflächentemperatur-Abweichung (2017 und 2018), maximale Pflanzenhöhe (2017) ausgewählt. Kein einzelner Parameter war jedoch ausreichend um DRYM vorherzusagen. Daher wurden mehrere unabhängige Parameter in einem multiplen Regressionsmodell integriert. Im multiplen Regressionsmodel wurde der spezifische Experiment-DRYM in Population A aus dem mittleren Blattwinkel (2016) vorhergesagt. In Population B konnte die spezifische Toleranz aus der maximalen Lichteinfalltiefe, der maximalen Blattneigung (2017) und der mittleren Blattneigung (2018) oder der mittleren Oberflächentemperatur-Abweichung und dem mittleren Blattwinkel (2018) vorhergesagt werden. In Daten aus mehreren Anbauperioden von Population A wählte das multiple lineare Regressionsmodel maximale Pflanzenhöhe und mittleren Blattwinkel als Prognoseparameter für Toleranz aus. In Population B wurde mittlere Blattneigung als Prognoseparameter für Toleranz ausgewählt. In Population A war jedoch die Variation, die durch das Endmodell erklärt wurde, zu niedrig. Die mittlere Toleranz hinsichtlich des Medians der Eltern (2011 – 2018) über alle FGH Pflanzen oder alle Pflanzen (FGH und Feld) wurde ferner aus der maximalen Pflanzenhöhe (Population A) und der maximalen Pflanzenhöhe und mittleren Blattneigung (Population) vorhergesagt. Insgesamt konnten Bestandsparameter als Marker für Trockentoleranz genutzt werden. Dementsprechend könnte Trockenstresszucht in Kartoffeln beschleunigt werden, indem Blattneigung, Lichteinfalltiefe, Pflanzenhöhe und Oberflächentemperatur-Abweichung als Marker für Trockentoleranz, insbesondere unter Langzeitstressbedingungen, genutzt werden. (Übersetzung Karin Köhl, 4.6.2020). KW - Canopy parameters KW - Drought tolerance KW - DRYM KW - Bestandsparameter KW - Trockentoleranz KW - DRYM Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-486836 ER - TY - THES A1 - Autenrieth, Marijke T1 - Population genomics of two odontocetes in the North Atlantic and adjacent waters BT - Evolutionary history and conservation implications N2 - Due to continuously intensifying human usage of the marine environment worldwide ranging cetaceans face an increasing number of threats. Besides whaling, overfishing and by-catch, new technical developments increase the water and noise pollution, which can negatively affect marine species. Cetaceans are especially prone to these influences, being at the top of the food chain and therefore accumulating toxins and contaminants. Furthermore, they are extremely noise sensitive due to their highly developed hearing sense and echolocation ability. As a result, several cetacean species were brought to extinction during the last century or are now classified as critically endangered. This work focuses on two odontocetes. It applies and compares different molecular methods for inference of population status and adaptation, with implications for conservation. The worldwide distributed sperm whale (Physeter macrocephalus) shows a matrilineal population structure with predominant male dispersal. A recently stranded group of male sperm whales provided a unique opportunity to investigate male grouping for the first time. Based on the mitochondrial control region, I was able to infer that male bachelor groups comprise multiple matrilines, hence derive from different social groups, and that they represent the genetic variability of the entire North Atlantic. The harbor porpoise (Phocoena phocoena) occurs only in the northern hemisphere. By being small and occurring mostly in coastal habitats it is especially prone to human disturbance. Since some subspecies and subpopulations are critically endangered, it is important to generate and provide genetic markers with high resolution to facilitate population assignment and subsequent protection measurements. Here, I provide the first harbour porpoise whole genome, in high quality and including a draft annotation. Using it for mapping ddRAD seq data, I identify genome wide SNPs and, together with a fragment of the mitochondrial control region, inferred the population structure of its North Atlantic distribution range. The Belt Sea harbors a distinct subpopulation oppose to the North Atlantic, with a transition zone in the Kattegat. Within the North Atlantic I could detect subtle genetic differentiation between western (Canada-Iceland) and eastern (North Sea) regions, with support for a German North Sea breading ground around the Isle of Sylt. Further, I was able to detect six outlier loci which show isolation by distance across the investigated sampling areas. In employing different markers, I could show that single maker systems as well as genome wide data can unravel new information about population affinities of odontocetes. Genome wide data can facilitate investigation of adaptations and evolutionary history of the species and its populations. Moreover, they facilitate population genetic investigations, providing a high resolution, and hence allowing for detection of subtle population structuring especially important for highly mobile cetaceans. N2 - Mit der immer stärker zunehmenden Nutzung des marinen Lebensraumes durch den Menschen, häufen sich auch die Bedrohungen, wie beispielsweise Lebensraumzerstörungen, denen Cetacea ausgesetzt sind. Die Folgen aus Walfang, Überfischung und Beifang, wie auch die stärkere Verschmutzung der Meere sowie die Zunahme des generellen Lärmpegels, haben negative Effekte auf eine Vielzahl mariner Arten. Cetacea sind besonders anfällig für diese Störungen, da sie einerseits am Ende der Nahrungskette stehen und somit besonders Schadstoffe, wie bspw. PBEs, in ihren Körpern akkumulieren und andererseits durch ihr hoch angepasstes Gehör äußerst sensibel gegenüber Geräuschstörungen sind. Im Laufe des letzten Jahrhunderts wurden einige marine Säugetiere bereits ausgerottet oder fast bis an den Rand des Aussterbens gebracht. Diese Arbeit konzentriert sich auf zwei Zahnwalarten, die in ihrer Biologie und Populationsstruktur sehr verschieden sind. Sie bieten die Möglichkeit, verschiedene Methoden der Naturschutz- und Populationsgenetik anzuwenden und zu vergleichen. Der weltweit verbreitete Pottwal ist matrilineal organisiert mit Weibchen, die in sozialen Gruppen in der Nähe des Äquators leben, und Männchen, die in kleinen Gruppen zu den Polen migrieren. Zum Jahresbeginn 2016 strandete eine Gruppe junger männlicher Pottwale entlang der Nordsee. Dieses Ereignis bot die einzigartige Chance, erstmals die genetische Zusammensetzung einer männlichen Pottwalgruppe zu untersuchen. Basierend auf der mitochondrialen Kontrollregion, konnte ich zeigen, dass sie von mehreren Matrilinien abstammen und in ihrer Gesamtheit die genetische Vielfalt der nordatlantischen Gesamtpopulation repräsentieren. Der Schweinswal ist innerhalb der nördlichen Hemisphäre weit verbreitet. Durch seine kleine Körpergrösse und die Präferenz für küstennahe Habitate ist er besonders anfällig gegenüber negativen anthropogenen Einflüssen. Da sowohl eine seiner Unterarten als auch einige Subpopulationen durch die IUCN als stark bedroht klassifiziert sind, ist es besonders wichtig die genetische Struktur dieser Art und ihrer Populationen zu erfassen und hochauflösende Markersysteme zu generieren, um verlässliche Informationen zum Status lokaler Populationen für weiterführende Naturschutzmaßnahmen bereitzustellen. In dieser Arbeit konnte ich die erste komplette Genomsequenz des Schweinwal in hoher Qualität bereitstellen und sie für die Analyse von ddRAD-Daten als Referenz nutzen. Mittles genomweit verteilter SNPs, sowie einem Abschnitt der mitochondrialen Kontrollregion zeigte sich, dass die Schweinswale in der Beltsee eine eigenständige Population bilden, mit einer Transitionszone zum Nord-Atlantik im Kattegat. Innerhalb des Nord-Atlantiks zeigten sich Unterschiede zwischen West (Kanada-Island) und Ost (Nordsee), sowie eine Abgrenzung deutscher Schweinswale um die Insel Sylt. Außerdem konnte ich sechs SNPs identifizieren, welche die populationsgenetische Auflösung im Nordatlantik und geographischen Distanz wiederspiegeln. Durch den Vergleich verschiedener Markersysteme konnte ich zeigen, dass sowohl einzelne Marker als auch genomweite Marker neue Erkenntnisse zu Populationsstrukturen und Anpassungen von Zahnwalen liefern. Durch die hohe Mobilität und den schwer zugänglichen Lebensraum mariner Säugetiere sind hochauflösende genetische Markersysteme der Schlüssel für ein besseres Verständnis und den Schutz dieser Arten. KW - genomics KW - population genetics KW - conservation KW - evolution KW - whole genome KW - toothed whales KW - Genomik KW - Populationsgenetik KW - Naturschutz KW - Evolution KW - Zahnwale Y1 - 2020 ER - TY - THES A1 - Banerjee, Pallavi T1 - Glycosylphosphatidylinositols (GPIs) and GPI-anchored proteins tethered to lipid bilayers BT - modelling a complex interplay of carbohydrates, proteins and lipids BT - Modellierung eines komplexen Zusammenspiels von Kohlenhydraten, Proteinen und Lipiden N2 - Glycosylphosphatidylinositols (GPIs) are highly complex glycolipids that serve as membrane anchors to a large variety of eukaryotic proteins. These are covalently attached to a group of peripheral proteins called GPI-anchored proteins (GPI-APs) through a post-translational modification in the endoplasmic reticulum. The GPI anchor is a unique structure composed of a glycan, with phospholipid tail at one end and a phosphoethanolamine linker at the other where the protein attaches. The glycan part of the GPI comprises a conserved pseudopentasaccharide core that could branch out to carry additional glycosyl or phosphoethanolamine units. GPI-APs are involved in a diverse range of cellular processes, few of which are signal transduction, protein trafficking, pathogenesis by protozoan parasites like the malaria- causing parasite Plasmodium falciparum. GPIs can also exist freely on the membrane surface without an attached protein such as those found in parasites like Toxoplasma gondii, the causative agent of Toxoplasmosis. These molecules are both structurally and functionally diverse, however, their structure-function relationship is still poorly understood. This is mainly because no clear picture exists regarding how the protein and the glycan arrange with respect to the lipid layer. Direct experimental evidence is rather scarce, due to which inconclusive pictures have emerged, especially regarding the orientation of GPIs and GPI-APs on membrane surfaces and the role of GPIs in membrane organization. It appears that computational modelling through molecular dynamics simulations would be a useful method to make progress. In this thesis, we attempt to explore characteristics of GPI anchors and GPI-APs embedded in lipid bilayers by constructing molecular models at two different resolutions – all-atom and coarse-grained. First, we show how to construct a modular molecular model of GPIs and GPI-anchored proteins that can be readily extended to a broad variety of systems, addressing the micro-heterogeneity of GPIs. We do so by creating a hybrid link to which GPIs of diverse branching and lipid tails of varying saturation with their optimized force fields, GLYCAM06 and Lipid14 respectively, can be attached. Using microsecond simulations, we demonstrate that GPI prefers to “flop-down” on the membrane, thereby, strongly interacting with the lipid heads, over standing upright like a “lollipop”. Secondly, we extend the model of the GPI core to carry out a systematic study of the structural aspects of GPIs carrying different side chains (parasitic and human GPI variants) inserted in lipid bilayers. Our results demonstrate the importance of the side branch residues as these are the most accessible, and thereby, recognizable epitopes. This finding qualitatively agrees with experimental observations that highlight the role of the side branches in immunogenicity of GPIs and the specificity thereof. The overall flop-down orientation of the GPIs with respect to the bilayer surface presents the side chain residues to face the solvent. Upon attaching the green fluorescent protein (GFP) to the GPI, it is seen to lie in close proximity to the bilayer, interacting both with the lipid heads and glycan part of the GPI. However the orientation of GFP is sensitive to the type of GPI it is attached to. Finally, we construct a coarse-grained model of the GPI and GPI-anchored GFP using a modified version of the MARTINI force-field, using which the timescale is enhanced by at least an order of magnitude compared to the atomistic system. This study provides a theoretical perspective on the conformational behavior of the GPI core and some of its branched variations in presence of lipid bilayers, as well as draws comparisons with experimental observations. Our modular atomistic model of GPI can be further employed to study GPIs of variable branching, and thereby, aid in designing future experiments especially in the area of vaccines and drug therapies. Our coarse-grained model can be used to study dynamic aspects of GPIs and GPI-APs w.r.t plasma membrane organization. Furthermore, the backmapping technique of converting coarse-grained trajectory back to the atomistic model would enable in-depth structural analysis with ample conformational sampling. N2 - Glykosylphosphatidyl-Inositole (GPIs) sind komplex Glykolipide, die insbesondere auf der Oberfläche eukaryotischer Zellen als Verankerung einer Reihe unterschiedlicher Proteine dienen. GPIs werden den Proteinen als post-translationale Modifikationen im endoplasmotischen Reticulum hinzugefügt. Die Verankerung in der Membran wird durch einen Phospholipidrest hergestellt, das Protein ist dann über ein sich daran anschließendes Pseudo-Pentasaccharid und einen Phospoethanolaminrest kovalent an den GPI Anker gebunden. Das Pseudo-Pentasaccharid ist dabei proteinunabhängig eine invariante Struktur, kann aber an bestimmten Stellen durch weitere Carbohydratseitenketten und/oder Phosphoethanolaminreste wesentlich erweitert werden. GPI-verankerte Proteine (engl. GPI-anchored proteins, GPI-APs) sind an einer Reihe zellulärer Prozesse beteiligt; einige davon betreffen intra- und interzelluläre Signalübermittlung oder Proteintransport auf der Zelloberfläche; die Pathogenese vieler Parasiten, wie etwa Plasmodium falciparum (Malaria) wird entscheidend durch GPI-APs bestimmt; es können aber auch die bei vielen parasitischen Einzellern freien, ohne Protein auftretenden GPIs pathogene Wirkung entfalten wie etwa bei der Toxoplasmose (Toxoplasma gondii). Der allgemeine Zusammenhang von Struktur eines GPI-AP und seiner Funktion ist allerdings bis heute zum größten Teil unbekannt. Dies liegt zum einen daran, dass sich kein klares Bild zeichnen lässt, wie ein GPI-AP relativ zur Zellmembran exponiert wird. Die relevanten Zeit- und Längenskalen sind experimentell unzugänglich, und entsprechende in vivo oder in vitro Untersuchungen liefern lediglich indirekte Hinweise. Der Fall GPI-verankerter Proteine ist daher ein Beispiel, in dem computergestützte Modellierung einen wesentlichen Beitrag zur Aufklärung leisten kann. In der vorliegenden Arbeit wird zunächst ein atomistisches, molekulardynamisches Modell für GPIs und GPI-APs konstruiert und vorgestellt, mit dem sich GPI-APs auf der Längenskala einiger 10 Nanometer und einer Zeitskala von etwa 10 Mikrosekunden effizient untersuchen lassen. Modularität des Modells ist hierbei ein entscheidender Aspekt: mit den entwickelten Modellen lassen sich eine breite Palette von GPI Variationen darstellen. GPIs weisen, wie auch andere Proteinglykolysierungen eine sogenannte Mikroheterogenität auf; die Modifikation durch den Zucker kann sich zwischen den Kopien ein und desselben Proteins unterscheiden. Die technische Umsetzung erfolgt im Rahmen der sogenannten AMBER- Familie atomistischer Kraftfelder, die nach einem bestimmten Schema für biomolekulare Simulationen entwickelt wurden. Dabei werden existierende Modelle für Zucker (GLYCAM06) und Lipide (Lipid14) durch die Optimierung und Herleitung fehlender Parameter so angepasst, dass sich ein vollständiges GPI-AP in einer Lipid-Doppelschicht darstellen lässt. Dabei zeigt sich, dass das Protein vermittelt über den flexiblen Anker über einen beachtlichen Bewegungsspielraum verfügt. Im Falle des hier betrachteten Green Fluorescent Protein (GFP) kann man daher das Bild einer festen Orientierung des Proteins in Bezug auf die Lipidoberfläche verwerfen; wie in der Mehrzahl der Simulationen beobachtet, kann das GFP sogar vollständig auf der Lipidschicht zu liegen kommen. Weiterhin konnte nachgewiesen werden, dass eine Reihe möglicher Seitenketten des GPI Ankers, die zu Parasiten wie Toxoplasma gondii gehören und bei entsprechenden Immunreaktionen relevant sind, tatsächlich so exponiert werden, dass ihre Rolle als Rezeptoren unterstrichen wird. Das Pseudopentasaccharid selbst ist dabei teilweise in die Kopfgruppenregion der Lipidschicht eingebettet. Des Weiteren wurde hier das atomistische Modell auf eine vergröberte Darstellung im Rahmen des MARTINI Kraftfelds projiziert, um die zugänglichen Zeit- und Längenskalen noch einmal um einen Faktor 10 zu erweitern. Somit werden auch Studien GPI-APs möglich, bei denen sich ihre Dynamik in heterogenen Lipidschichten untersuchen lässt, etwa um Fragen zu beantworten, wie diese Proteine mit verschiedenen Membrandomänen assoziieren. Insgesamt werden mit dieser Arbeit eine Reihe von Ansätzen aufgezeigt, wie sich GPI verankerte Proteine möglicherweise effektiver in speziell angepassten Experimenten und in größerem Detail untersuchen lassen, als dies bisher möglich war. T2 - Glykosylphosphatidylinositole (GPIs) und GPI-verankerte Proteine, die an Lipid-Doppelschichten gebunden sind KW - GPI KW - carbohydrates KW - membrane KW - protein KW - molecular dynamics KW - coarse-graining KW - martini KW - GPI KW - Kohlenhydrate KW - grobkörnig KW - martini KW - Membran KW - Molekular-dynamik KW - Protein Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-489561 ER - TY - THES A1 - Calzadiaz Ramirez, Liliana T1 - Engineering highly efficient NADP-dependent formate dehydrogenases using a NADPH biosensor Escherichia coli strain N2 - NADPH is an essential cofactor that drives biosynthetic reactions in all living organisms. It is a reducing agent and thus electron donor of anabolic reactions that produce major cellular components as well as many products in biotechnology. Indeed, the engineering of metabolic pathways for the production of many products is often limited by the availability of NADPH. One common strategy to address this issue is to swap cofactor specificity from NADH to NADPH of enzymes. However, this process is time consuming and challenging because multiple parameters need to be engineered in parallel. Therefore, the first aim of this project is to establish an efficient metabolic biosensor to select enzymes that can reduce NADP+. An NADPH auxotroph strain was constructed by deleting major reactions involved in NADPH biosynthesis in E. coli’s central carbon metabolism with the exception of 6-phosphogluconate dehydrogenase. To validate this strain, two enzymes were tested in the presence of several carbon sources: a dihydrolipoamide dehydrogenase variant of E. coli harboring seven mutations and a formate dehydrogenase (FDH) from Mycobacterium vaccae N10 harboring four mutations were found to support NADPH biosynthesis and growth. The strain was subjected to adaptive laboratory evolution with the goal of testing its robustness under different carbon sources. Our evolution experiment resulted in the random mutagenesis of the malic enzyme (maeA), enabling it to produce NADPH. The additional deletion of maeA rendered a more robust second-generation biosensor strain for NADP+ reduction. We devised a structure-guided directed evolution approach to change cofactor specificity in Pseudomonas sp. 101 FDH. To this end, a library of >106 variants was tested using in vivo selection. Compared to the best engineered enzymes reported, our best variant carrying five mutations shows 5-fold higher catalytic efficiency and 13-fold higher specificity towards NADP+, as well as 2-fold higher affinity towards formate. In conclusion, we demonstrate the potential of in vivo selection and evolution-guided approaches to develop better NADPH biosensors and to engineer cofactor specificity by the simultaneous improvement of multiple parameters (kinetic efficiency with NADP+, specificity towards NADP+, and affinity towards formate), which is a major challenge in protein engineering due to the existence of tradeoffs and epistasis. N2 - NADPH ist ein essentieller Kofaktor, der biosynthetische Reaktionen in allen lebenden Organismen antreibt. Es ist ein Reduktionsmittel und damit Elektronenspender für anabole Reaktionen, die wichtige Zellkomponenten sowie viele Produkte in der Biotechnologie erzeugen. In der Tat ist das Engineering von Stoffwechselwegen in Mikroben für die Herstellung vieler Produkte oft durch die Verfügbarkeit von NADPH begrenzt. Eine gängige Strategie zur Lösung dieses Problems ist der Austausch der Kofaktor-Spezifität von NADH gegen NADPH in Enzymen von Stoffwechselwegen, da der erstgenannte Kofaktor reichlicher vorhanden ist als der letztere. Dieser Prozess ist jedoch zeitaufwendig und schwierig, da mehrere Parameter parallel entwickelt werden müssen. Daher ist das erste Ziel dieses Projekts die Etablierung eines effizienten metabolischen Biosensors zur Auswahl von Enzymen, die NADP+ reduzieren können. Ein auxotropher NADPH-Stamm wurde durch die Entfernung der wichtigsten Reaktionen, die an der NADPH-Biosynthese im zentralen Kohlenstoffmetabolismus von E. coli beteiligt sind, mit Ausnahme der 6-Phosphogluconat-Dehydrogenase, konstruiert. Um diesen Stamm zu validieren, wurden zwei Enzyme in Gegenwart mehrerer Kohlenstoffquellen getestet: eine Dihydrolipoamid-Dehydrogenase-Variante von E. coli mit sieben Mutationen und Formiat-Dehydrogenase (FDH) aus Mycobacterium vaccae N10 mit vier Mutationen wurden gefunden, die die NADPH-Biosynthese und das Wachstum unterstützen. Der Stamm wurde dann einer adaptiven Laborentwicklung unterzogen mit dem Ziel, seine Robustheit unter verschiedenen Kohlenstoffquellen zu testen. Unser Evolutionsexperiment führte zu einer zufälligen Mutagenese des Apfelsäure-Enzyms (maeA), die es ihm ermöglicht, NADPH zu produzieren. Die zusätzliche Entfernung von maeA machte einen robusteren Biosensor-Stamm der zweiten Generation für die NADP+-Reduktion möglich. Wir entwickelten einen strukturgesteuerten Evolutionsansatz zur Änderung der Kofaktorspezifität von Pseudomonas sp. 101 FDH. Zu diesem Zweck wurde eine Bibliothek von >106 Varianten mit Hilfe der in vivo-Selektion getestet. Im Vergleich zu den am besten entwickelten Enzymen über die berichtet wurde, zeigt unsere beste Variante mit fünf Mutationen eine 5-fach höhere katalytische Effizienz und eine 13-fach höhere Spezifität gegenüber NADP+ sowie eine 2-fach höhere Affinität gegenüber Formiat. Zusammenfassend zeigen wir das Potenzial der in vivo-Selektion und evolutionsgesteuerten Ansätze zur Entwicklung 14 besserer NADPH-Biosensoren und zur Entwicklung der Kofaktor-Spezifität durch die gleichzeitige Verbesserung mehrerer Parameter (kinetische Effizienz mit NADP+, Spezifität gegenüber NADP+ und Affinität zu Formiat), was aufgrund der Existenz von Zielkonflikten und Epistase eine große Herausforderung im Protein-Engineering darstellt. KW - formate dehydrogenases Y1 - 2020 ER - TY - THES A1 - Crawford, Michael Scott T1 - Using individual-based modeling to understand grassland diversity and resilience in the Anthropocene N2 - The world’s grassland systems are increasingly threatened by anthropogenic change. Susceptible to a variety of different stressors, from land-use intensification to climate change, understanding the mechanisms driving the maintenance of these systems’ biodiversity and stability, and how these mechanisms may shift under human-mediated disturbance, is thus critical for successfully navigating the next century. Within this dissertation, I use an individual-based and spatially-explicit model of grassland community assembly (IBC-grass) to examine several processes, thought key to understanding their biodiversity and stability and how it changes under stress. In the first chapter of my thesis, I examine the conditions under which intraspecific trait variation influences the diversity of simulated grassland communities. In the second and third chapters of my thesis, I shift focus towards understanding how belowground herbivores influence the stability of these grassland systems to either a disturbance that results in increased, stochastic, plant mortality, or eutrophication. Intraspecific trait variation (ITV), or variation in trait values between individuals of the same species, is fundamental to the structure of ecological communities. However, because it has historically been difficult to incorporate into theoretical and statistical models, it has remained largely overlooked in community-level analyses. This reality is quickly shifting, however, as a consensus of research suggests that it may compose a sizeable proportion of the total variation within an ecological community and that it may play a critical role in determining if species coexist. Despite this increasing awareness that ITV matters, there is little consensus of the magnitude and direction of its influence. Therefore, to better understand how ITV changes the assembly of grassland communities, in the first chapter of my thesis, I incorporate it into an established, individual-based grassland community model, simulating both pairwise invasion experiments as well as the assembly of communities with varying initial diversities. By varying the amount of ITV in these species’ functional traits, I examine the magnitude and direction of ITV’s influence on pairwise invasibility and community coexistence. During pairwise invasion, ITV enables the weakest species to more frequently invade the competitively superior species, however, this influence does not generally scale to the community level. Indeed, unless the community has low alpha- and beta- diversity, there will be little effect of ITV in bolstering diversity. In these situations, since the trait axis is sparsely filled, the competitively inferior may suffer less competition and therefore ITV may buffer the persistence and abundance of these species for some time. In the second and third chapters of my thesis, I model how one of the most ubiquitous trophic interactions within grasslands, herbivory belowground, influences their diversity and stability. Until recently, the fundamental difficulty in studying a process within the soil has left belowground herbivory “out of sight, out of mind.” This dilemma presents an opportunity for simulation models to explore how this understudied process may alter community dynamics. In the second chapter of my thesis, I implement belowground herbivory – represented by the weekly removal of plant biomass – into IBC-grass. Then, by introducing a pulse disturbance, modelled as the stochastic mortality of some percentage of the plant community, I observe how the presence of belowground herbivores influences the resistance and recovery of Shannon diversity in these communities. I find that high resource, low diversity, communities are significantly more destabilized by the presence of belowground herbivores after disturbance. Depending on the timing of the disturbance and whether the grassland’s seed bank persists for more than one season, the impact of the disturbance – and subsequently the influence of the herbivores – can be greatly reduced. However, because human-mediated eutrophication increases the amount of resources in the soil, thus pressuring grassland systems, our results suggest that the influence of these herbivores may become more important over time. In the third chapter of my thesis, I delve further into understanding the mechanistic underpinnings of belowground herbivores on the diversity of grasslands by replicating an empirical mesocosm experiment that crosses the presence of herbivores above- and below-ground with eutrophication. I show that while aboveground herbivory, as predicted by theory and frequently observed in experiments, mitigates the impact of eutrophication on species diversity, belowground herbivores counterintuitively reduce biodiversity. Indeed, this influence positively interacts with the eutrophication process, amplifying its negative impact on diversity. I discovered the mechanism underlying this surprising pattern to be that, as the herbivores consume roots, they increase the proportion of root resources to root biomass. Because root competition is often symmetric, herbivory fails to mitigate any asymmetries in the plants’ competitive dynamics. However, since the remaining roots have more abundant access to resources, the plants’ competition shifts aboveground, towards asymmetric competition for light. This leads the community towards a low-diversity state, composed of mostly high-performance, large plant species. We further argue that this pattern will emerge unless the plants’ root competition is asymmetric, in which case, like its counterpart aboveground, belowground herbivory may buffer diversity by reducing this asymmetry between the competitively superior and inferior plants. I conclude my dissertation by discussing the implications of my research on the state of the art in intraspecific trait variation and belowground herbivory, with emphasis on the necessity of more diverse theory development in the study of these fundamental interactions. My results suggest that the influence of these processes on the biodiversity and stability of grassland systems is underappreciated and multidimensional, and must be thoroughly explored if researchers wish to predict how the world’s grasslands will respond to anthropogenic change. Further, should researchers myopically focus on understanding central ecological interactions through only mathematically tractable analyses, they may miss entire suites of potential coexistence mechanisms that can increase the coviability of species, potentially leading to coexistence over ecologically-significant timespans. Individual-based modelling, therefore, with its focus on individual interactions, will prove a critical tool in the coming decades for understanding how local interactions scale to larger contexts, and how these interactions shape ecological communities and further predicting how these systems will change under human-mediated stress. N2 - Grasland ist durch anthropogene Veränderungen bedroht. Im Rahmen dieser Dissertation verwende ich ein individuelles und räumlich-explizites Modell der Grasland-Gemeinschaftsversammlung (IBC-Gras), um verschiedene Prozesse zu untersuchen, die als Schlüssel zum Verständnis ihrer Biodiversität und Stabilität und deren Veränderung unter Stress gelten. Im ersten Kapitel meiner Dissertation untersuche ich die Bedingungen, unter denen eine intraspezifische Merkmalsvariation die Vielfalt der simulierten Graslandgemeinschaften beeinflusst. Im zweiten und dritten Kapitel meiner Dissertation verlege ich den Schwerpunkt auf das Verständnis, wie unterirdische Pflanzenfresser die Stabilität dieser Grünlandsysteme beeinflussen, und zwar entweder durch eine Störung, die zu erhöhter, stochastischer Pflanzensterblichkeit oder Eutrophierung führt. Intraspezifische Merkmalsvariation (ITV) oder Variation der Merkmalswerte zwischen Individuen derselben Art ist für die Struktur ökologischer Gemeinschaften von grundlegender Bedeutung. Da sie sich jedoch historisch gesehen nur schwer in theoretische und statistische Modelle einbauen lässt, wurde sie bei Analysen auf Gemeindeebene weitgehend übersehen. Diese Realität ändert sich jedoch schnell, da ein Forschungskonsens darauf hindeutet, dass sie einen beträchtlichen Anteil der Gesamtvariation innerhalb einer ökologischen Gemeinschaft ausmachen kann und dass sie eine entscheidende Rolle bei der Bestimmung der Koexistenz von Arten spielen kann. Trotz dieses zunehmenden Bewusstseins, dass das ITV von Bedeutung ist, gibt es kaum einen Konsens über das Ausmaß und die Richtung seines Einflusses. Um besser zu verstehen, wie ITV die Zusammensetzung von Grünlandgesellschaften verändert, beziehe ich daher im ersten Kapitel meiner Dissertation diese in ein etabliertes, auf dem Individuum basierendes Modell der Grünlandgesellschaften ein. Indem ich die Menge an ITV in den funktionellen Merkmalen dieser Arten variiere, untersuche ich das Ausmaß und die Richtung des Einflusses von ITV auf die paarweise Unsichtbarkeit und die Koexistenz von Gemeinschaften. Im zweiten und dritten Kapitel meiner Dissertation modelliere ich, wie eine der allgegenwärtigsten trophischen Interaktionen innerhalb von Grasland, die Pflanzenfresserei unter der Erde, deren Vielfalt und Stabilität beeinflusst. Bis vor kurzem hat die grundlegende Schwierigkeit, einen Prozess im Boden zu untersuchen, dazu geführt, dass Pflanzenfresser unter der Erde "aus den Augen, aus dem Sinn" geraten sind. Dieses Dilemma bietet eine Gelegenheit für Simulationsmodelle zu erforschen, wie dieser noch nicht untersuchte Prozess die Dynamik von Gemeinschaften verändern kann. Im zweiten Kapitel meiner Dissertation implementiere ich unterirdische Pflanzenfresserei - repräsentiert durch die wöchentliche Entfernung von pflanzlicher Biomasse - in IBC-Gras. Dann beobachte ich durch die Einführung einer Pulsstörung, die als stochastische Mortalität eines gewissen Prozentsatzes der Pflanzengemeinschaft modelliert wird, wie die Anwesenheit von unterirdischen Pflanzenfressern die Resistenz und Erholung der Shannon-Diversität in diesen Gemeinschaften beeinflusst. Ich stelle fest, dass Gemeinschaften mit hohen Ressourcen und geringer Diversität durch die Anwesenheit von unterirdischen Pflanzenfressern nach einer Störung wesentlich stärker destabilisiert werden. Abhängig vom Zeitpunkt der Störung und davon, ob die Saatgutbank des Graslandes länger als eine Saison besteht, können die Auswirkungen der Störung - und damit der Einfluss der Pflanzenfresser - stark reduziert werden. Im dritten Kapitel meiner Dissertation vertiefe ich das Verständnis der mechanistischen Grundlagen der unterirdischen Herbivoren für die Diversität von Grasland, indem ich ein empirisches Mesokosmos-Experiment repliziere, das die Anwesenheit von Herbivoren über- und unterirdisch mit Eutrophierung kreuzt. Ich zeige, dass, während oberirdische Pflanzenfresser, wie von der Theorie vorhergesagt und häufig in Experimenten beobachtet, die Auswirkungen der Eutrophierung auf die Artenvielfalt abschwächen, unterirdische Pflanzenfresser die Artenvielfalt kontraintuitiv reduzieren. Tatsächlich interagiert dieser Einfluss positiv mit dem Eutrophierungsprozess und verstärkt seine negativen Auswirkungen auf die Vielfalt. Ich schließe meine Dissertation mit einer Erörterung der Auswirkungen meiner Forschung auf den Stand der Technik bei der Variation intraspezifischer Merkmale und der unterirdischen Pflanzenfresserei, wobei der Schwerpunkt auf der Notwendigkeit einer vielfältigeren Theorieentwicklung bei der Untersuchung dieser grundlegenden Wechselwirkungen liegt. Meine Ergebnisse deuten darauf hin, dass der Einfluss dieser Prozesse auf die biologische Vielfalt und Stabilität von Graslandsystemen unterschätzt wird und mehrdimensional ist und gründlich erforscht werden muss, wenn Forscher vorhersagen wollen, wie die Grasländer der Welt auf anthropogene Veränderungen reagieren werden. Sollten sich Forscherinnen und Forscher darüber hinaus myopisch darauf konzentrieren, zentrale ökologische Wechselwirkungen nur durch mathematisch nachvollziehbare Analysen zu verstehen, könnten sie ganze Suiten potenzieller Koexistenzmechanismen übersehen, die die Begehrlichkeit von Arten erhöhen können und möglicherweise zu einer Koexistenz über ökologisch signifikante Zeitspannen hinweg führen. Daher wird sich die individuenbasierte Modellierung mit ihrem Schwerpunkt auf individuellen Interaktionen in den kommenden Jahrzehnten als ein entscheidendes Instrument erweisen, um zu verstehen, wie lokale Interaktionen sich auf größere Zusammenhänge ausdehnen und wie diese Interaktionen ökologische Gemeinschaften formen, und um weiter vorherzusagen, wie sich diese Systeme unter vom Menschen verursachtem Stress verändern werden. T2 - Einsatz von individualbasierten Modellen zum Verständnis der Grasland-Diversität und -Resilienz im Anthropozän KW - intraspecific trait variation KW - eutrophication KW - belowground herbivory KW - grassland KW - ecological modelling KW - intraspezifische Merkmalsvariation KW - Eutrophierung KW - Grasland KW - ökologische Modellierung KW - unterirdische Pflanzenfresser Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-479414 ER - TY - THES A1 - Dehm, Daniel T1 - Development of concepts for the genomic mining of novel secondary metabolites in symbiotic cyanobacteria N2 - Naturstoffe sind seit der goldenen Ära der Antibiotika von immer größerem Interesse, sowohl für die Grundlagenforschung als auch die Angewandten Wissenschaften, da sie die Hauptquelle für neuartige Pharmazeutika mit starken antibiotischen, anti-entzündlichen und Antitumor-Aktivitäten darstellen. Neben den technologischen Fortschritten im Bereich der Hochdurchsatz Genomsequenzierung und dem verbesserten Verständnis des modularen Aufbaus der Biosynthesewege von Sekundärmetaboliten, kam es auch zu einem Wechsel vom labor-gestützten Screening aktiver Zellextrakte hin zum Algorithmen-basierten in silico Screening nach neuen Naturstoff-Biosyntheseclustern. Obwohl die steigende Zahl verfügbarer Genomsequenzen zeigte, dass nicht-ribosomale Peptid-Synthetasen (NRPS), Polyketid-Synthasen (PKS), und ribosomal synthetisierte und posttranslational modifizierte Peptide (RiPPs) ubiquitär in allen Sparten des Lebens gefunden werden können, so zeigen einige Phyla wie Actinobakterien oder Cyanobakterien eine besonders hohe Dichte an Sekundärmetabolitclustern. Der fakultativ symbiotische, N2-fixierende Modellorganismus N. punctiforme PCC73102 ist ein terrestrisches typ-IV Cyanobakterium, welches nicht nur einen besonders hohen Anteil seines Genoms der Produktion von Sekundärmetaboliten widmet, sondern zusätzlich noch genetisch modifizierbar ist. Eine AntiSMASH Analyse des Genoms zeigte, dass N. punctiforme insgesamt sechzehn potentielle Sekundärmetabolitcluster besitzt, von denen aber bis heute nur zweien ein spezifisches Produkt zugewiesen werden konnte. Das macht N. punctiforme zu einem perfekten Testorganismus für die Entwicklung eines neuartigen kombinatorischen Genomic Mining Ansatzes zur Detektion von bislang unbeschriebenen Naturstoffen. Der neuartige Ansatz, der im Rahmen dieser Studie entwickelt wurde, stellt eine Kombination aus Genomic Mining, unabhängigen Monitoring-Techniken sowie modifizierten Kultivierungsbedingungen dar und führte nicht nur zu neuen Erkenntnissen im Bereich cyanobakterieller Naturstoffsynthese, sondern letztlich auch zur Entdeckung eines neuen, von N. punctiforme produzierten, Naturstoffs. Die Herstellung und Untersuchung einer Reporterstamm Bibliothek, bestehend aus je einem CFP-produzierenden Transkriptionsreporter für jedes der sechzehn Sekundärmetabolitcluster von N. punctiforme, zeigte, dass im Gegensatz zur Erwartung nicht alle Biosynthesecluster für die man kein Produkt nachweisen kann auch nicht exprimiert werden. Stattdessen konnten klar definierbare Expressionsmuster beschrieben werden, was deutlich machte, dass die Naturstoffproduktion einer engen Regulation unterliegt und nur ein kleiner Teil der Biosynthesecluster unter Standardbedingungen tatsächlich still sind. Darüber hinaus führte die Erhöhung der Lichtintensität sowie der Kohlenstoffdioxid-Verfügbarkeit zusammen mit der Kultivierung von N. punctiforme zu extrem hohen Zelldichten zu einer starken Erhöhung der gesamten metabolischen Aktivität des Organismus. Nähere Untersuchungen der Zellextrakte dieser hoch-dichte Kultivierungen führten letztlich zur Entdeckung einer neuartigen Gruppe von Microviridinen mit verlängerter Peptidsequenz, welche Microviridin N3-N9 genannt wurden. Sowohl die Kultivierung der Transkriptionsreporter als auch die RTqPCR-basierte Untersuchung der Transkriptionslevel der verschiedenen Biosynthesecluster zeigten, dass die hoch-Zelldichte Kultivierung von N. punctiforme zu einer Aktivierung von 50% der vorhandenen Sekundärmetabolitcluster führt. Im Gegensatz zu dieser sehr breit-gefächerten Aktivierung, führt die Co-Kultivierung von N. punctiforme in chemischen oder physischen Kontakt zu einer N-gehungerten Wirtspflanze (Blasia pusilla) zu einer sehr spezifischen Aktivierung der RIPP4 und RiPP3 Biosynthesecluster. Obwohl dieser Effekt mittels verschiedener unabhängiger Methoden bestätigt werden konnte und trotz intensiver Analysebemühungen, konnte jedoch keinem der beiden Cluster ein Produkt zugeordnet werden. Diese Studie stellt die erste weitreichende, systematische Analyse eines cyanobakteriellen Sekundärmetaboloms durch einen kombinatorischen Ansatz aus Genomic Mining und unabhängigen Monitoring-Techniken dar und kann als neue strategische Herangehensweise für die Untersuchung anderer Organismen hinsichtlich ihrer Sekundärmetabolit-Produktion dienen. Obwohl es bereits gut beschriebene einzelne Sekundärmetabolite gibt, wie beispielweise den Zelldifferenzierungsfaktor PatS in Anabaena sp. PCC7120, so ist der Grad an Regulation der in dieser Studie gezeigt werden konnte bislang beispiellos und die Entschlüsselung dieser Mechanismen könnte die Entdeckung neuer Naturstoffe stark beschleunigen. Daneben lassen die Ergebnisse aber auch darauf schließen, dass die Induktion der Biosynthesewege nicht das eigentliche Problem darstellt, sondern vielmehr die verlässliche Detektion deren Produkte. Die Erarbeitung neuer Analytik-Strategien könnte somit auch einen deutlichen Einfluss auf die Geschwindigkeit der Entdeckung neuer Naturstoffe haben. N2 - Since the golden era of antibiotics natural products are of ever growing interest to both basic research and applied sciences as they are the main source of new bioactive compounds delivering lead structures for new pharmaceuticals with potent antibiotic, anti-inflammatory or anti-cancer activities. Alongside the technological advances in high-throughput genome sequencing and the better understanding of the general organization of those modular biosynthetic assembly lines of secondary metabolites, there was also a shift from wet-lab screening of active cell extracts towards algorithm-based in silico screening for new natural product biosynthesis gene clusters (BGCs). Although the increasing availability of full genome sequences revealed that such non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS) and ribosomally synthesized and post-translationally modified peptides (RiPPs) can be found in all three kingdoms of life, certain phyla like actinobacteria and cyanobacteria show a very high density of these secondary metabolite BGCs. The facultative symbiotic, N2-fixing model organism N. punctiforme PCC73102 is a terrestrial type IV cyanobacterium that not only dedicates are very large fraction of its genome to secondary metabolite production but is also amenable to genetic modification. AntiSMASH analysis of the genome showed that there are sixteen potential secondary metabolite BGCs encoded in N. punctiforme, but until now there were only two compounds assigned to their respective BGC leaving the remaining fourteen orphan. This makes the organism a perfect subject for the establishment of a novel combinatorial genomic mining approach for the detection of new natural products. In the course of this study a combinatorial approach of genomic mining, independent monitoring techniques and alteration of cultivation conditions lead to new insights in cyanobacterial natural product biosynthesis and ultimately to the description of a novel compound produced by N. punctiforme. With the generation and investigation of a reporter strain library consisting of CFP-producing transcriptional reporter mutants for every predicted secondary metabolite BGC of N. punctiforme, it could be shown that natural product expression is in fact not silent for all those BGCs where no compound can be detected. Instead several distinct expression patterns could be described highlighting that secondary metabolite production is under tight regulation and only a minor fraction of these BGCs is in fact silent under standard laboratory conditions. Furthermore, increasing light intensity and carbon dioxide availability and cultivating N. punctiforme to very high cell densities had a tremendous impact on the overall metabolic activity of the organism. Investigation of high density cultivated cell extracts ultimately lead to the detection of a so far undescribed set of microviridins with unusual extended peptide sequences named Microviridin N3 – N9. Both cultivation of the transcriptional reporter mutants as well as RTqPCR-based detection of secondary metabolite BGC transcription levels revealed that in fact 50% of N. punctiforme’s natural product BGCs are upregulated under high cell density conditions. In contrast to this very broad response, co-cultivation of N. punctiforme in chemical or physical contact with a N-deprived host plant (Blasia pusilla) lead to a very specific upregulation of two natural product BGCs, namely RIPP3 and RIPP4. Although this response could be confirmed by various independent monitoring techniques and heavy analytical efforts were spent, no compound could be assigned to either of these BGCs. This study is the first in-depth systematic investigation of a cyanobacterial secondary metabolome by a combinatorial approach of genome mining and independent monitoring techniques that can serve as a new strategic approach to gain further insight into natural product synthesis of various organisms. Although there are single well described examples of secondary metabolites like the cell differentiation factor PatS in Anabaena sp. strain PCC 7120, the level and extent of regulation observed in this study is unprecedented and understanding of these mechanisms might be the key to streamline natural product discovery. However, the results of this study also highlight that induction of secondary metabolite BGCs is not the real challenge. Instead the new insights point towards analytical issues being a severe hurdle and finding reliable strategies to overcome these problems might as well drive natural product discovery. T2 - Entwicklung von Konzepten für das Genomic Mining von neuartigen Sekundärmetaboliten in symbiotischen Cyanobakterien KW - Cyanobacteria KW - Cyanobakterien KW - Natural Products KW - Naturstoffe KW - Genomic Mining KW - Secondary Metabolites KW - Sekundärmetabolite KW - Nostoc punctiforme Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-478342 ER - TY - THES A1 - Folkertsma, Remco T1 - Evolutionary adaptation to climate in microtine mammals N2 - Understanding how organisms adapt to their local environment is a major focus of evolutionary biology. Local adaptation occurs when the forces of divergent natural selection are strong enough compared to the action of other evolutionary forces. An improved understanding of the genetic basis of local adaptation can inform about the evolutionary processes in populations and is of major importance because of its relevance to altered selection pressures due to climate change. So far, most insights have been gained by studying model organisms, but our understanding about the genetic basis of local adaptation in wild populations of species with little genomic resources is still limited. With the work presented in this thesis I therefore set out to provide insights into the genetic basis of local adaptation in populations of two voles species: the common vole (Microtus arvalis) and the bank vole (Myodes glareolus). Both voles species are small mammals, they have a high evolutionary potential compared to their dispersal capabilities and are thus likely to show genetic responses to local conditions, moreover, they have a wide distribution in which they experience a broad range of different environmental conditions, this makes them an ideal species to study local adaptation. The first study focused on producing a novel mitochondrial genome to facilitate further research in M. arvalis. To this end, I generated the first mitochondrial genome of M. arvalis using shotgun sequencing and an iterative mapping approach. This was subsequently used in a phylogenetic analysis that produced novel insights into the phylogenetic relationships of the Arvicolinae. The following two studies then focused on the genetic basis of local adaptation using ddRAD-sequencing data and genome scan methods. The first of these involved sequencing the genomic DNA of individuals from three low-altitude and three high-altitude M. arvalis study sites in the Swiss Alps. High-altitude environments with their low temperatures and low levels of oxygen (hypoxia) pose considerable challenges for small mammals. With their small body size and proportional large body surface they have to sustain high rates of aerobic metabolism to support thermogenesis and locomotion, which can be restricted with only limited levels of oxygen available. To generate insights into high-altitude adaptation I identified a large number of single nucleotide polymorphisms (SNPs). These data were first used to identify high levels of differentiation between study sites and a clear pattern of population structure, in line with a signal of isolation by distance. Using genome scan methods, I then identified signals of selection associated with differences in altitude in genes with functions related to oxygen transport into tissue and genes related to aerobic metabolic pathways. This indicates that hypoxia is an important selection pressure driving local adaptation at high altitude in M. arvalis. A number of these genes were linked with high-altitude adaptation in other species before, which lead to the suggestion that high-altitude populations of several species have evolved in a similar manner as a response to the unique conditions at high altitude The next study also involved the genetic basis of local adaptation, here I provided insights into climate-related adaptation in M. glareolus across its European distribution. Climate is an important environmental factor affecting the physiology of all organisms. In this study I identified a large number of SNPs in individuals from twelve M. glareolus populations distributed across Europe. I used these, to first establish that populations are highly differentiated and found a strong pattern of population structure with signal of isolation by distance. I then employed genome scan methods to identify candidate loci showing signals of selection associated with climate, with a particular emphasis on polygenic loci. A multivariate analysis was used to determine that temperature was the most important climate variable responsible for adaptive genetic variation among all variables tested. By using novel methods and genome annotation of related species I identified the function of genes of candidate loci. This showed that genes under selection have functions related to energy homeostasis and immune processes. Suggesting that M. glareolus populations have evolved in response to local temperature and specific local pathogenic selection pressures. The studies presented in this thesis provide evidence for the genetic basis of local adaptation in two vole species across different environmental gradients, suggesting that the identified genes are involved in local adaptation. This demonstrates that with the help of novel methods the study of wild populations, which often have little genomic resources available, can provide unique insights into evolutionary processes. N2 - Ein Schwerpunkt der Evolutionsbiologie besteht darin, zu verstehen, wie sich Organismen an ihre lokale Umgebung anpassen. Lokale Anpassung tritt ein, wenn die Kräfte der divergierenden natürlichen Selektion im Vergleich zu anderen evolutionären Kräften stark genug sind. Ein verbessertes Verständnis der genetischen Grundlagen der lokalen Anpassung kann Informationen über die Evolutionsprozesse in Populationen liefern und ist durch seine Relevanz für durch den Klimawandel bedingte veränderte Selektionsdrücke von großer Bedeutung. Bisher wurden die meisten Erkenntnisse durch Untersuchungen an Modellorganismen gewonnen. Jedoch ist das Verständnis der genetischen Grundlagen der lokalen Anpassung in Wildpopulationen von Arten mit geringen genomischen Ressourcen noch immer begrenzt. Mit den in dieser Doktorarbeit vorgestellten Untersuchungen war es daher mein Ziel, Einblicke in die genetischen Grundlagen der lokalen Anpassung in Populationen von zwei Wühlmausarten zu geben: der Feldmaus (Microtus arvalis) und der Rötelmaus (Myodes glareolus). Bei beiden handelt es sich um kleine Säugetiere mit einem, im Vergleich zu ihrer Ausbreitungsfähigkeit, hohen Evolutionspotential. Daher ist anzunehmen, dass sie genetische Reaktionen auf lokale Bedingungen zeigen. Hinzu kommt, dass sie aufgrund ihrer großen Verbreitung ein großes Spektrum an verschiedenen Umweltbedingungen erfahren, was sie zu einer idealen Spezies, für die Untersuchung lokaler Anpassung macht. Die erste Studie dieser Arbeit konzentrierte sich auf die Erstellung eines bisher nicht verfügbaren mitochondriellen Genoms, um die weitere Forschung an M. arvalis zu erleichtern. Dies wurde mittels Shotgun-Sequenzierung und eines iterativen Kartierungsansatzes erreicht. Anschließend wurde es in einer phylogenetischen Analyse verwendet, die neue Erkenntnisse über die phylogenetischen Beziehungen der Arvicolinae lieferte. Die folgenden zwei Studien konzentrierten sich auf die genetische Basis der lokalen Anpassung unter Verwendung von ddRAD-Sequenzierungsdaten und Genom-Scan-Methoden. Die erste umfasste die Sequenzierung der genomischen DNA von Individuen aus drei M. arvalis-Untersuchungsgebieten in geringer Höhe und drei in großer Höhe in den Schweizer Alpen. Umgebungen in großer Höhe mit niedrigen Temperaturen und niedrigem Sauerstoffgehalt (Hypoxie) stellen kleine Säugetiere vor erhebliche Herausforderungen. Aufgrund ihrer geringen Körpergröße und proportional großen Körperoberfläche müssen sie hohe aerobe Stoffwechselraten aufrechterhalten, um die Thermogenese und Fortbewegung zu unterstützen, die mit begrenzter Sauerstoffverfügbarkeit eingeschränkt sein können. Um Einblicke in die Höhenanpassung zu erhalten, habe ich eine große Anzahl von Einzelnukleotidpolymorphismen (SNPs) identifiziert. Mit Hilfe dieser Daten wurden ein hohes Maß an Differenzierung zwischen den Untersuchungsorten und ein klares Muster der Populationsstruktur zusammen mit einem isolation-by-distance Signal identifiziert. Unter Verwendung von Genom-Scan-Methoden identifizierte ich Selektionssignale in Genen, die mit Höhenunterschieden verbunden werden. Diese besitzen Funktionen, die mit dem Sauerstofftransport in das Gewebe sowie mit aeroben Stoffwechselwegen zusammenhängen. Dies weist darauf hin, dass Hypoxie ein wichtiger Selektionsdruck für die lokale Anpassung in großer Höhe für M. arvalis ist. Einige dieser Gene sind bereits früher mit der Höhenanpassung bei anderen Arten in Verbindung gebracht worden. Dies führte zu der Annahme, dass sich Populationen in großer Höhe lebender verschiedener Arten in Anpassung an die einzigartigen Bedingungen in großer Höhe auf ähnliche Weise entwickelt haben. Die nächste Studie befasste sich ebenfalls mit den genetischen Grundlagen der lokalen Anpassung. Hier stellte ich Erkenntnisse über die klimabedingte Anpassung von M. glareolus in ihrem europäischen Verbreitungsgebiet vor. Das Klima ist ein wichtiger Umweltfaktor, der die Physiologie aller Organismen beeinflusst. In dieser Studie identifizierte ich zehntausende SNPs bei Individuen aus zwölf in ganz Europa verteilten M. glareolus-Populationen. Diese ergaben eine starke Differenzierung der Populationen mit deutlicher Populationsstruktur und einem Signal für isolation-by-distance. Anschließend verwendete ich Genom-Scan-Methoden, um mögliche Loci zu identifizieren, die mit dem Klima verbundene Selektionssignale aufweisen, wobei der Schwerpunkt dabei auf polygenen Loci lag. Eine Multivariaten Analysemethode ermittelte, dass die Temperatur die wichtigste Klimavariable unter allen getesteten Variablen ist, die für die adaptive genetische Variation verantwortlich ist. Mit Hilfe neuartiger Methoden und der Annotation von Genomen verwandter Spezies identifizierte ich die Funktion von Genen an Kandidatenloci. Diese zeigten, dass die unter Selektion stehenden Gene Funktionen im Zusammenhang mit der Energiehomöostase und den Immunprozessen ausüben. Dies wiederum deutet darauf hin, dass sich die Populationen von M. glareolus in Reaktion auf die lokale Temperatur und den spezifischen lokalen Selektionsdruck für Krankheitserreger entwickelt haben. Die in dieser Arbeit vorgestellten Studien liefern Belege für die genetische Basis der lokalen Anpassung auf verschiedene Umweltgradienten in zwei Wühlmausarten. Dies deutet darauf hin, dass die identifizierten Gene an der lokalen Anpassung beteiligt sind. Darüber hinaus zeigt dies, dass Untersuchungen wildlebender Populationen mit geringen genomischen Ressourcen durch den Einsatz neuartiger Methoden einzigartige Einblicke in evolutionäre Prozesse ermöglichen können. T2 - Evolutionäre Klimaanpassungen bei Wühlmausarten KW - Genomics KW - Local adaptation KW - Altitude KW - Climate KW - Microtus arvalis KW - Myodus glareolus KW - Höhe KW - Klima KW - Genomik KW - lokale Anpassung KW - Feldmaus KW - Rötelmaus Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476807 ER - TY - THES A1 - Fontana, Federica T1 - Antagonistic activities of Vegfr3/Flt4 and Notch1b fine-tune mechanosensitive signaling during zebrafish cardiac valvulogenesis N2 - Cardiac valves are essential for the continuous and unidirectional flow of blood throughout the body. During embryonic development, their formation is strictly connected to the mechanical forces exerted by blood flow. The endocardium that lines the interior of the heart is a specialized endothelial tissue and is highly sensitive to fluid shear stress. Endocardial cells harbor a signal transduction machinery required for the translation of these forces into biochemical signaling, which strongly impacts cardiac morphogenesis and physiology. To date, we lack a solid understanding on the mechanisms by which endocardial cells sense the dynamic mechanical stimuli and how they trigger different cellular responses. In the zebrafish embryo, endocardial cells at the atrioventricular canal respond to blood flow by rearranging from a monolayer to a double-layer, composed of a luminal cell population subjected to blood flow and an abluminal one that is not exposed to it. These early morphological changes lead to the formation of an immature valve leaflet. While previous studies mainly focused on genes that are positively regulated by shear stress, the mechanisms regulating cell behaviors and fates in cells that lack the stimulus of blood flow are largely unknown. One key discovery of my work is that the flow-sensitive Notch receptor and Krüppel-like factor (Klf) 2, one of the best characterized flow-regulated transcriptional factors, are activated by shear stress but that they function in two parallel signal transduction pathways. Each of these two pathways is essential for the rearrangement of atrioventricular cells into an immature double-layered valve leaflets. A second key discovery of my study is the finding that both Notch and Klf2 signaling negatively regulate the expression of the angiogenesis receptor Vegfr3/Flt4, which becomes restricted to abluminal endocardial cells of the valve leaflet. Within these cells, Flt4 downregulates the expressions of the cell adhesion proteins Alcam and VE-cadherin. A loss of Flt4 causes abluminal endocardial cells to ectopically express Notch, which is normally restricted to luminal cells, and impairs valve morphology. My study suggests that abluminal endocardial cells that do not experience mechanical stimuli loose Notch expression and this triggers expression of Flt4. In turn, Flt4 negatively regulates Notch on the abluminal side of the valve leaflet. These antagonistic signaling activities and fine-tuned gene regulatory mechanisms ultimately shape cardiac valve leaflets by inducing unique differences in the fates of endocardial cells. N2 - Herzklappen sind essentiell für den kontinuierlichen und gerichteten Blutfluss durch den Körper. Während der Embryonalentwicklung ist die Bildung der Herzklappen stark von vom Blutfluss generierten, mechanischen Kräften abhängig. Das Endokard, ein endotheliales Gewebe, das das Herz im Inneren auskleidet, reagiert sehr sensibel auf biomechanische Einwirkungen. Endokardzellen weisen eine Signaltransduktionsmaschinerie auf, welche die Umwandlung dieser Kräfte in biochemische und elektrische Signale ermöglicht und somit unverzichtbar für die Herzmorphogenese und -physiologie ist. Allerdings fehlt uns noch immer das Verständnis der Mechanismen, mit denen Endokardzellen dynamische, biomechanische Signale wahrnehmen und wie verschiedene zelluläre Antworten ausgelöst werden können. Im Zebrafischembryo reagieren Endokardzellen im atrioventrikulärem Kanal auf Blutfluss induzierte Schubspannung mit einer Umorganisation, wobei sich aus einer Einzelschicht an Zellen eine Doppelschicht bildet. Letztere besteht aus einer luminalen Zellpopulation, die dem Blutstrom ausgesetzt ist und einer abluminalen Population, der der Kontakt zum Blut fehlt. Diese initialen morphologischen Veränderungen führen zur Ausbildung des frühen Herzklappensegels. Bisherige Studien berichteten im Besonderen über Gene die positiv von einer veränderten Schubspannung in Endokardzellen reguliert werden. Allerdings sind die Mechanismen, die das Verhalten und die Spezifizierung von den Zellen regulieren, die nicht in Kontakt mit dem Blutfluss sind, weitgehend unbekannt. Eine meiner Schlüsselentdeckungen in dieser Arbeit ist, dass zwei der am besten charakterisierten, durch Blutfluss transkriptional regulierten Faktoren, der Notch Rezeptor und der Krüppel-like factor (Klf) 2, durch Schubspannung aktiviert werden. Dies funktioniert auf zwei parallelen mechanosensitiven Signaltransduktionswegen und beide Kaskaden sind essentiell für die Umorganisation der atrioventrikulären Zellen während der Bildung der frühen zweischichtigen Klappensegeln. Eine zweite wichtige Entdeckung meiner Studien ist, dass die Expression des angiogenen Faktors Vegfr3/Flt4, die auf abluminale Endokardzellen im frühen Klappensegel beschränk ist, von beiden Signalwegen, Notch und KLf2, negativ reguliert wird. Außerdem veringert Flt4 die Expression der Zelladhäsionsproteine Alcam und VE-cadherin in abluminalen Zellen und führt die Herzklappenmorphogenese herbei. Der Verlust von Flt4 wiederum führt zu einer ektopischen Expression von Notch in abluminalen Endokardzellen, welche sonst nur in luminalen Zellen auftritt. Daher zeigt meine Arbeit, dass abluminale Endokardzellen, die keinem mechanischem Reiz ausgesetzt sind, Notch herunterregulieren und damit die Expression von Flt4 auslösen. Flt4 wiederum blockiert dann zusätzlich den Notch Signalweg in dieser Zellpopulation. Diese antagonistischen Signalaktivitäten und fein abgestimmte Genregulationsmechanismen sorgen für Unterschiede in der Spezifizierung der Endokardzellen und formen so schließlich die Segelklappen im Herz. KW - heart development KW - cardiac valves KW - zebrafish KW - mechanosensation KW - Herzklappe KW - Herzentwicklung KW - Mechanosensation KW - Zebrafisch Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-487517 ER -