TY - JOUR A1 - Wischke, Christian A1 - Baehr, Elen A1 - Racheva, Miroslava A1 - Heuchel, Matthias A1 - Weigel, Thomas A1 - Lendlein, Andreas T1 - Surface immobilization strategies for tyrosinase as biocatalyst applicable to polymer network synthesis JF - MRS Advances N2 - Enzymes have recently attracted increasing attention in material research based on their capacity to catalyze the conversion of polymer-bound moieties for synthesizing polymer networks, particularly bulk hydrogels. hi this study. the surface immobilization of a relevant enzyme. mushroom tyrosinase, should be explored using glass as model surface. In a first step. the glass support was functionalized with silanes to introduce either amine or carboxyl groups, as confirmed e.g. by X-ray photoelectron spectroscopy. By applying glutaraldehyde and EDC/NHS chemistry, respectively, surfaces have been activated for subsequent successful coupling of tyrosinase. Via protein hydrolysis and amino acid characterization by HPLC, the quantity of bound tyrosinase was shown to correspond to a full surface coverage. Based on the visualized enzymatic conversion of a test substrate at the glass support. the functionalized surfaces may be explored for surface-associated material synthesis in the future. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.630 SN - 2059-8521 VL - 3 IS - 63 SP - 3875 EP - 3881 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Wissel, Jörg A1 - Manack, Aubrey A1 - Brainin, Michael T1 - Toward an epidemiology of poststroke spasticity JF - Neurology : official journal of the American Academy of Neurology N2 - Poststroke spasticity (PSS)-related disability is emerging as a significant health issue for stroke survivors. There is a need for predictors and early identification of PSS in order to minimize complications and maladaptation from spasticity. Reviewing the literature on stroke and upper motor neuron syndrome, spasticity, contracture, and increased muscle tone measured with the Modified Ashworth Scale and the Tone Assessment Scale provided data on the dynamic time course of PSS. Prevalence estimates of PSS were highly variable, ranging from 4% to 42.6%, with the prevalence of disabling spasticity ranging from 2% to 13%. Data on phases of the PSS continuum revealed evidence of PSS in 4% to 27% of those in the early time course (1-4 weeks poststroke), 19% to 26.7% of those in the postacute phase (1-3 months poststroke), and 17% to 42.6% of those in the chronic phase (>3 months poststroke). Data also identified key risk factors associated with the development of spasticity, including lower Barthel Index scores, severe degree of paresis, stroke-related pain, and sensory deficits. Although such indices could be regarded as predictors of PSS and thus enable early identification and treatment, the different measures of PSS used in those studies limit the strength of the findings. To optimize evaluation in the different phases of care, the best possible assessment of PSS would make use of a combination of indicators for clinical impairment, motor performance, activity level, quality of life, and patient-reported outcome measures. Applying these recommended measures, as well as increasing our knowledge of the physiologic predictors of PSS, will enable us to perform clinical and epidemiologic studies that will facilitate identification and early, multimodal treatment. Y1 - 2013 SN - 0028-3878 VL - 80 IS - 1 SP - S13 EP - S19 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Witt, B. A1 - Bornhorst, Julia A1 - Mitze, H. A1 - Ebert, Franziska A1 - Meyer, S. A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Arsenolipids exert less toxicity in a human neuron astrocyte co-culture as compared to the respective monocultures JF - Metallomics : integrated biometal science N2 - Arsenic-containing hydrocarbons (AsHCs), natural products found in seafood, have recently been shown to exert toxic effects in human neurons. In this study we assessed the toxicity of three AsHCs in cultured human astrocytes. Due to the high cellular accessibility and substantial toxicity observed astrocytes were identified as further potential brain target cells for arsenolipids. Thereby, the AsHCs exerted a 5-19-fold higher cytotoxicity in astrocytes as compared to arsenite. Next we compared the toxicity of the arsenicals in a co-culture model of the respective human astrocytes and neurons. Notably the AsHCs did not show any substantial toxic effects in the co-culture, while arsenite did. The arsenic accessibility studies indicated that in the co-culture astrocytes protect neurons against cellular arsenic accumulation especially after incubation with arsenolipids. In summary, these data underline the importance of the glial-neuron interaction when assessing the in vitro neurotoxicity of new unclassified metal species. Y1 - 2017 U6 - https://doi.org/10.1039/c7mt00036g SN - 1756-5901 SN - 1756-591X VL - 9 SP - 442 EP - 446 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Witt, Isabell A1 - Zanor, Maria Ines A1 - Müller-Röber, Bernd T1 - Transcription factor function search : how do individual factors regulate agronomical important processes in plants? (Subproject A) Y1 - 2004 SN - 3-00-011587-0 ER - TY - JOUR A1 - Witzel, Katja A1 - Abu Risha, Marua A1 - Albers, Philip A1 - Börnke, Frederik A1 - Hanschen, Franziska S. T1 - Corrigendum : Identification and characterization of three epithiospecifier protein isoforms in Brassica oleracea / Witzel, Katja; Abu Risha, Marua; Albers, Philip; Börnke, Frederike; Hanschen, Franziska S. - Lausanne: Frontiers Media, 2019. - Frontiers in plant science : FPLS. - 10 (2019) art. 1552. - doi: 10.3389/fpls.2019.01552 JF - Frontiers in plant science : FPLS KW - epithionitrile KW - expression profile KW - functional complementation KW - glucosinolate hydrolysis KW - nitrile KW - specifier proteins KW - tissue KW - specificity Y1 - 2020 U6 - https://doi.org/10.3389/fpls.2020.00523 SN - 1664-462X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Witzel, Katja A1 - Abu Risha, Marua A1 - Albers, Philip A1 - Börnke, Frederik A1 - Hanschen, Franziska S. T1 - Identification and Characterization of Three Epithiospecifier Protein Isoforms in Brassica oleracea JF - Frontiers in plant science N2 - Glucosinolates present in Brassicaceae play a major role in herbivory defense. Upon tissue disruption, glucosinolates come into contact with myrosinase, which initiates their breakdown to biologically active compounds. Among these, the formation of epithionitriles is triggered by the presence of epithiospecifier protein (ESP) and a terminal double bond in the glucosinolate side chain. One ESP gene is characterized in the model plant Arabidopsis thaliana (AtESP; At1g54040.2). However, Brassica species underwent genome triplication since their divergence from the Arabidopsis lineage. This indicates the presence of multiple ESP isoforms in Brassica crops that are currently poorly characterized. We identified three B. oleracea ESPs, specifically BoESP1 (LOC106296341), BoESP2 (LOC106306810), and BoESP3 (LOC106325105) based on in silico genome analysis. Transcript and protein abundance were assessed in shoots and roots of four B. oleracea vegetables, namely broccoli, kohlrabi, white, and red cabbage, because these genotypes showed a differential pattern for the formation of glucosinolate hydrolysis products as well for their ESP activity. BoESP1 and BoESP2 were expressed mainly in shoots, while BoESP3 was abundant in roots. Biochemical characterization of heterologous expressed BoESP isoforms revealed different substrate specificities towards seven glucosinolates: all isoforms showed epithiospecifier activity on alkenyl glucosinolates, but not on non-alkenyl glucosinolates. The pH-value differently affected BoESP activity: while BoESP1 and BoESP2 activities were optimal at pH 6-7, BoESP3 activity remained relatively stable from pH 4 to 7. In order test their potential for the in vivo modification of glucosinolate breakdown, the three isoforms were expressed in A. thaliana Hi-0, which lacks AtESP expression, and analyzed for the effect on their respective hydrolysis products. The BoESPs altered the hydrolysis of allyl glucosinolate in the A. thaliana transformants to release 1-cyano-2,3-epithiopropane and reduced formation of the corresponding 3-butenenitrile and allyl isothiocyanate. Plants expressing BoESP2 showed the highest percentage of released epithionitriles. Given these results, we propose a model for isoform-specific roles of B. oleracea ESPs in glucosinolate breakdown. KW - epithionitrile KW - expression profile KW - functional complementation KW - glucosinolate hydrolysis KW - nitrile KW - specifier proteins KW - tissue specificity Y1 - 2019 U6 - https://doi.org/10.3389/fpls.2019.01552 SN - 1664-462X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Wojcik, Laurie Anne Myriam A1 - Ceulemans, Ruben A1 - Gaedke, Ursula T1 - Functional diversity buffers the effects of a pulse perturbation on the dynamics of tritrophic food webs JF - Ecology and Evolution N2 - Biodiversity decline causes a loss of functional diversity, which threatens ecosystems through a dangerous feedback loop: This loss may hamper ecosystems’ ability to buffer environmental changes, leading to further biodiversity losses. In this context, the increasing frequency of human-induced excessive loading of nutrients causes major problems in aquatic systems. Previous studies investigating how functional diversity influences the response of food webs to disturbances have mainly considered systems with at most two functionally diverse trophic levels. We investigated the effects of functional diversity on the robustness, that is, resistance, resilience, and elasticity, using a tritrophic—and thus more realistic—plankton food web model. We compared a non-adaptive food chain with no diversity within the individual trophic levels to a more diverse food web with three adaptive trophic levels. The species fitness differences were balanced through trade-offs between defense/growth rate for prey and selectivity/half-saturation constant for predators. We showed that the resistance, resilience, and elasticity of tritrophic food webs decreased with larger perturbation sizes and depended on the state of the system when the perturbation occurred. Importantly, we found that a more diverse food web was generally more resistant and resilient but its elasticity was context-dependent. Particularly, functional diversity reduced the probability of a regime shift toward a non-desirable alternative state. The basal-intermediate interaction consistently determined the robustness against a nutrient pulse despite the complex influence of the shape and type of the dynamical attractors. This relationship was strongly influenced by the diversity present and the third trophic level. Overall, using a food web model of realistic complexity, this study confirms the destructive potential of the positive feedback loop between biodiversity loss and robustness, by uncovering mechanisms leading to a decrease in resistance, resilience, and potentially elasticity as functional diversity declines. KW - functional diversity KW - nutrient spike KW - pulse perturbation KW - regime shift KW - robustness KW - tritrophic food web Y1 - 2021 U6 - https://doi.org/10.1002/ece3.8214 SN - 2045-7758 N1 - Wojcik and Ceulemans shared first authorship. VL - 11 IS - 22 SP - 15639 EP - 15663 PB - John Wiley & Sons, Inc. CY - Hoboken (New Jersey) ER - TY - JOUR A1 - Wolff, Martin A1 - Gast, Klaus A1 - Evers, Andreas A1 - Kurz, Michael A1 - Pfeiffer-Marek, Stefania A1 - Schüler, Anja A1 - Seckler, Robert A1 - Thalhammer, Anja T1 - A Conserved Hydrophobic Moiety and Helix-Helix Interactions Drive the Self-Assembly of the Incretin Analog Exendin-4 JF - Biomolecules N2 - Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix–helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers. KW - biophysics KW - diabetes KW - peptides KW - oligomerization KW - conformational change KW - molecular modeling KW - static and dynamic light scattering KW - spectroscopy Y1 - 2021 U6 - https://doi.org/10.3390/biom11091305 SN - 2218-273X VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wolff, Martin A1 - Schüler, Anja A1 - Gast, Klaus A1 - Seckler, Robert A1 - Evers, Andreas A1 - Pfeiffer-Marek, Stefania A1 - Kurz, Michael A1 - Nagel, Norbert A1 - Haack, Torsten A1 - Wagner, Michael A1 - Thalhammer, Anja T1 - Self-Assembly of Exendin-4-Derived Dual Peptide Agonists is Mediated by Acylation and Correlated to the Length of Conjugated Fatty Acyl Chains JF - Molecular pharmaceutics N2 - Dual glucagon-like peptide-1/glucagon receptor agonists have emerged as promising candidates for the treatment of diabetes and obesity. Issues of degradation sensitivity and rapid renal clearance are addressed, for example, by the conjugation of peptides to fatty acid chains, promoting reversible albumin binding. We use combined dynamic and static light scattering to directly measure the self-assembly of a set of dual peptide agonists based on the exendin-4 structure with varying fatty acid chain lengths in terms of apparent molecular mass and hydrodynamic radius (R-S). We use NMR spectroscopy to gain an insight into the molecular architecture of the assembly. We investigate conformational changes of the monomeric subunits resulting from peptide self-assembly and assembly stability as a function of the fatty acid chain length using circular dichroism and fluorescence spectroscopy. Our results demonstrate that self-assembly of the exendin-4-derived dual agonist peptides is essentially driven by hydrophobic interactions involving the conjugated acyl chains. The fatty acid chain length affects assembly equilibria and the assembly stability, although the peptide subunits in the assembly retain a dynamic secondary structure. The assembly architecture is characterized by juxtaposition of the fatty acyl side chains and a hydrophobic cluster of the peptide moiety. This cluster experiences local conformational changes in the assembly compared to the monomeric unit leading to a reduction in solvent exposure. The N-terminal half of the peptide and a C-terminal loop are not in contact with neighboring peptide subunits in the assemblies. Altogether, our study contributes to a thorough understanding of the association characteristics and the tendency toward self-assembly in response to lipidation. This is important not only to achieve the desired bioavailability but also with respect to the physical stability of peptide solutions. KW - dual GLP-1/glucagon receptor agonist KW - self-assembly KW - light scattering KW - molecular architecture KW - lipidation KW - exendin-4 Y1 - 2020 U6 - https://doi.org/10.1021/acs.molpharmaceut.9b01195 SN - 1543-8384 SN - 1543-8392 VL - 17 IS - 3 SP - 965 EP - 978 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wolff, Martin A1 - Schüler, Anja A1 - Gast, Klaus A1 - Seckler, Robert A1 - Evers, Andreas A1 - Pfeiffer-Marek, Stefania A1 - Kurz, Michael A1 - Nagel, Norbert A1 - Haack, Torsten A1 - Wagner, Michael A1 - Thalhammer, Anja T1 - Self-Assembly of Exendin-4-Derived Dual Peptide Agonists is Mediated by Acylation and Correlated to the Length of Conjugated Fatty Acyl Chains JF - Molecular pharmaceutics N2 - Dual glucagon-like peptide-1/glucagon receptor agonists have emerged as promising candidates for the treatment of diabetes and obesity. Issues of degradation sensitivity and rapid renal clearance are addressed, for example, by the conjugation of peptides to fatty acid chains, promoting reversible albumin binding. We use combined dynamic and static light scattering to directly measure the self-assembly of a set of dual peptide agonists based on the exendin-4 structure with varying fatty acid chain lengths in terms of apparent molecular mass and hydrodynamic radius (R-S). We use NMR spectroscopy to gain an insight into the molecular architecture of the assembly. We investigate conformational changes of the monomeric subunits resulting from peptide self-assembly and assembly stability as a function of the fatty acid chain length using circular dichroism and fluorescence spectroscopy. Our results demonstrate that self-assembly of the exendin-4-derived dual agonist peptides is essentially driven by hydrophobic interactions involving the conjugated acyl chains. The fatty acid chain length affects assembly equilibria and the assembly stability, although the peptide subunits in the assembly retain a dynamic secondary structure. The assembly architecture is characterized by juxtaposition of the fatty acyl side chains and a hydrophobic cluster of the peptide moiety. This cluster experiences local conformational changes in the assembly compared to the monomeric unit leading to a reduction in solvent exposure. The N-terminal half of the peptide and a C-terminal loop are not in contact with neighboring peptide subunits in the assemblies. Altogether, our study contributes to a thorough understanding of the association characteristics and the tendency toward self-assembly in response to lipidation. This is important not only to achieve the desired bioavailability but also with respect to the physical stability of peptide solutions. KW - dual GLP-1/glucagon receptor agonist KW - self-assembly KW - light scattering KW - molecular architecture KW - lipidation KW - exendin-4 Y1 - 2020 U6 - https://doi.org/10.1021/acs.molpharmaceut.9b01195 SN - 1543-8384 VL - 17 IS - 3 SP - 965 EP - 978 PB - American Chemical Society CY - Washington ER -