TY - JOUR A1 - Crawford, Tim A1 - Karamat, Fazeelat A1 - Lehotai, Nóra A1 - Rentoft, Matilda A1 - Blomberg, Jeanette A1 - Strand, Åsa A1 - Björklund, Stefan T1 - Specific functions for mediator complex subunits from different modules in the transcriptional response of arabidopsis thaliana to abiotic stress JF - Scientific reports N2 - Adverse environmental conditions are detrimental to plant growth and development. Acclimation to abiotic stress conditions involves activation of signaling pathways which often results in changes in gene expression via networks of transcription factors (TFs). Mediator is a highly conserved co-regulator complex and an essential component of the transcriptional machinery in eukaryotes. Some Mediator subunits have been implicated in stress-responsive signaling pathways; however, much remains unknown regarding the role of plant Mediator in abiotic stress responses. Here, we use RNA-seq to analyze the transcriptional response of Arabidopsis thaliana to heat, cold and salt stress conditions. We identify a set of common abiotic stress regulons and describe the sequential and combinatorial nature of TFs involved in their transcriptional regulation. Furthermore, we identify stress-specific roles for the Mediator subunits MED9, MED16, MED18 and CDK8, and putative TFs connecting them to different stress signaling pathways. Our data also indicate different modes of action for subunits or modules of Mediator at the same gene loci, including a co-repressor function for MED16 prior to stress. These results illuminate a poorly understood but important player in the transcriptional response of plants to abiotic stress and identify target genes and mechanisms as a prelude to further biochemical characterization. KW - regulate gene expression KW - signal transduction KW - circadian clock KW - plant Mediator KW - salicylic-acid KW - activation KW - jasmonate KW - network KW - defense KW - MED16 Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-61758-w SN - 2045-2322 VL - 10 IS - 1 SP - 1 EP - 18 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Dammhahn, Melanie A1 - Mazza, Valeria A1 - Schirmer, Annika A1 - Göttsche, Claudia A1 - Eccard, Jana T1 - Of city and village mice BT - behavioural adjustments of striped field mice to urban environments JF - Scientific Reports N2 - A fundamental question of current ecological research concerns the drives and limits of species responses to human-induced rapid environmental change (HIREC). Behavioural responses to HIREC are a key component because behaviour links individual responses to population and community changes. Ongoing fast urbanization provides an ideal setting to test the functional role of behaviour for responses to HIREC. Consistent behavioural differences between conspecifics (animal personality) may be important determinants or constraints of animals’ adaptation to urban habitats. We tested whether urban and rural populations of small mammals differ in mean trait expression, flexibility and repeatability of behaviours associated to risk-taking and exploratory tendencies. Using a standardized behavioural test in the field, we quantified spatial exploration and boldness of striped field mice (Apodemus agrarius, n = 96) from nine sub-populations, presenting different levels of urbanisation and anthropogenic disturbance. The level of urbanisation positively correlated with boldness, spatial exploration and behavioural flexibility, with urban dwellers being bolder, more explorative and more flexible in some traits than rural conspecifics. Thus, individuals seem to distribute in a non-random way in response to human disturbance based on their behavioural characteristics. Animal personality might therefore play a key role in successful coping with the challenges of HIREC. KW - personality-traits KW - apodemus-agrarius KW - exploratory-behavior KW - fitness consequences KW - individual variation KW - avian personalities KW - animal personality KW - rural populations KW - natural-selection KW - natal dispersal Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-69998-6 SN - 2045-2322 VL - 10 PB - Macmillan Publishers Limited CY - London ER - TY - JOUR A1 - De Cahsan, Binia A1 - Nagel, Rebecca A1 - Schedina, Ina-Maria A1 - King, James J. A1 - Bianco, Pier G. A1 - Tiedemann, Ralph A1 - Ketmaier, Valerio T1 - Phylogeography of the European brook lamprey (Lampetra planeri) and the European river lamprey (Lampetra fluviatilis) species pair based on mitochondrial data JF - Journal of fish biology N2 - The European river lamprey Lampetra fluviatilis and the European brook lamprey Lampetra planeri (Block 1784) are classified as a paired species, characterized by notably different life histories but morphological similarities. Previous work has further shown limited genetic differentiation between these two species at the mitochondrial DNA level. Here, we expand on this previous work, which focused on lamprey species from the Iberian Peninsula in the south and mainland Europe in the north, by sequencing three mitochondrial marker regions of Lampetra individuals from five river systems in Ireland and five in southern Italy. Our results corroborate the previously identified pattern of genetic diversity for the species pair. We also show significant genetic differentiation between Irish and mainland European lamprey populations, suggesting another ichthyogeographic district distinct from those previously defined. Finally, our results stress the importance of southern Italian L. planeri populations, which maintain several private alleles and notable genetic diversity. KW - European lamprey KW - Lampetra KW - paired species KW - phylogeography KW - population KW - structure Y1 - 2020 U6 - https://doi.org/10.1111/jfb.14279 SN - 0022-1112 SN - 1095-8649 VL - 96 IS - 4 SP - 905 EP - 912 PB - Wiley-Blackwell CY - Oxford [u.a.] ER - TY - JOUR A1 - Dennis, Alice B. A1 - Ballesteros, Gabriel I. A1 - Robin, Stéphanie A1 - Schrader, Lukas A1 - Bast, Jens A1 - Berghöfer, Jan A1 - Beukeboom, Leo W. A1 - Belghazi, Maya A1 - Bretaudeau, Anthony A1 - Buellesbach, Jan A1 - Cash, Elizabeth A1 - Colinet, Dominique A1 - Dumas, Zoé A1 - Errbii, Mohammed A1 - Falabella, Patrizia A1 - Gatti, Jean-Luc A1 - Geuverink, Elzemiek A1 - Gibson, Joshua D. A1 - Hertaeg, Corinne A1 - Hartmann, Stefanie A1 - Jacquin-Joly, Emmanuelle A1 - Lammers, Mark A1 - Lavandero, Blas I. A1 - Lindenbaum, Ina A1 - Massardier-Galata, Lauriane A1 - Meslin, Camille A1 - Montagné, Nicolas A1 - Pak, Nina A1 - Poirié, Marylène A1 - Salvia, Rosanna A1 - Smith, Chris R. A1 - Tagu, Denis A1 - Tares, Sophie A1 - Vogel, Heiko A1 - Schwander, Tanja A1 - Simon, Jean-Christophe A1 - Figueroa, Christian C. A1 - Vorburger, Christoph A1 - Legeai, Fabrice A1 - Gadau, Jürgen T1 - Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum JF - BMC Genomics N2 - Background Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. Results We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. Conclusions These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org. KW - Parasitoid wasp KW - Aphid host KW - Aphidius ervi KW - Lysiphlebus fabarum KW - de novo genome assembly KW - DNA methylation loss KW - Chemosensory genes KW - Venom proteins KW - GC content KW - Toll and Imd pathways Y1 - 2020 U6 - https://doi.org/10.1186/s12864-020-6764-0 SN - 1471-2164 VL - 21 PB - BioMed Central CY - London ER - TY - JOUR A1 - des Aulnois, Maxime Georges A1 - Réveillon, Damien A1 - Robert, Elise A1 - Caruana, Amandine A1 - Briand, Enora A1 - Guljamow, Arthur A1 - Dittmann, Elke A1 - Amzil, Zouher A1 - Bormans, Myriam T1 - Salt shock responses of Microcystis revealed through physiological, transcript, and metabolomic analyses JF - Toxins N2 - The transfer of Microcystis aeruginosa from freshwater to estuaries has been described worldwide and salinity is reported as the main factor controlling the expansion of M. aeruginosa to coastal environments. Analyzing the expression levels of targeted genes and employing both targeted and non-targeted metabolomic approaches, this study investigated the effect of a sudden salt increase on the physiological and metabolic responses of two toxic M. aeruginosa strains separately isolated from fresh and brackish waters, respectively, PCC 7820 and 7806. Supported by differences in gene expressions and metabolic profiles, salt tolerance was found to be strain specific. An increase in salinity decreased the growth of M. aeruginosa with a lesser impact on the brackish strain. The production of intracellular microcystin variants in response to salt stress correlated well to the growth rate for both strains. Furthermore, the release of microcystins into the surrounding medium only occurred at the highest salinity treatment when cell lysis occurred. This study suggests that the physiological responses of M. aeruginosa involve the accumulation of common metabolites but that the intraspecific salt tolerance is based on the accumulation of specific metabolites. While one of these was determined to be sucrose, many others remain to be identified. Taken together, these results provide evidence that M. aeruginosa is relatively salt tolerant in the mesohaline zone and microcystin (MC) release only occurs when the capacity of the cells to deal with salt increase is exceeded. KW - Microcystis aeruginosa KW - microcystin KW - salt stress KW - metabolomic KW - transcript Y1 - 2020 U6 - https://doi.org/10.3390/toxins12030192 SN - 2072-6651 VL - 12 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Dolotovskaya, Sofya A1 - Bordallo, Juan Torroba A1 - Haus, Tanja A1 - Noll, Angela A1 - Hofreiter, Michael A1 - Zinner, Dietmar A1 - Roos, Christian T1 - Comparing mitogenomic timetrees for two African savannah primate genera (Chlorocebus and Papio) BT - Corrigenda JF - Zoological journal of the Linnean Society Y1 - 2020 U6 - https://doi.org/10.1093/zoolinnean/zlaa026 SN - 0024-4082 SN - 1096-3642 N1 - This is a correction to: Zoological Journal of the Linnean Society. - 181 (2017) 2. - S. 471 – 483, https://doi.org/10.1093/zoolinnean/zlx001 VL - 190 IS - 3 SP - 1071 EP - 1073 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Drago, Claudia A1 - Pawlak, Julia A1 - Weithoff, Guntram T1 - Biogenic aggregation of small microplastics alters their ingestion by a common freshwater micro-invertebrate JF - Frontiers in Environmental Science N2 - In recent years, increasing concerns have been raised about the environmental risk of microplastics in freshwater ecosystems. Small microplastics enter the water either directly or accumulate through disintegration of larger plastic particles. These particles might then be ingested by filter-feeding zooplankton, such as rotifers. Particles released into the water may also interact with the biota through the formation of aggregates, which might alter the uptake by zooplankton. In this study, we tested for size-specific aggregation of polystyrene microspheres and their ingestion by a common freshwater rotifer Brachionus calyciflorus. The ingestion of three sizes of polystyrene microspheres (MS) 1-, 3-, and 6-mu m was investigated. Each MS size was tested in combination with three different treatments: MS as the sole food intake, MS in association with food algae and MS aggregated with biogenic matter. After 72 h incubation in pre-filtered natural river water, the majority of the 1-mu m spheres occurred as aggregates. The larger the particles, the higher the relative number of single particles and the larger the aggregates. All particles were ingested by the rotifer following a Type-II functional response. The presence of algae did not influence the ingestion of the MS for all three sizes. The biogenic aggregation of microspheres led to a significant size-dependent alteration in their ingestion. Rotifers ingested more microspheres (MS) when exposed to aggregated 1- and 3-mu m MS as compared to single spheres, whereas fewer aggregated 6-mu m spheres were ingested. This indicates that the small particles when aggregated were in an effective size range for Brachionus, while the aggregated larger spheres became too large to be efficiently ingested. These observations provide the first evidence of a size- and aggregation-dependent feeding interaction between microplastics and rotifers. Microplastics when aggregated with biogenic particles in a natural environment can rapidly change their size-dependent availability. The aggregation properties of microplastics should be taken into account when performing experiments mimicking the natural environment. KW - microplastics ingestion KW - Brachionus calyciflorus KW - aggregation KW - microplastics KW - polystyrene KW - functional response Y1 - 2020 U6 - https://doi.org/10.3389/fenvs.2020.574274 SN - 2296-665X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Duffus, Benjamin R. A1 - Schrapers, Peer A1 - Schuth, Nils A1 - Mebs, Stefan A1 - Dau, Holger A1 - Leimkühler, Silke A1 - Haumann, Michael T1 - Anion binding and oxidative modification at the molybdenum cofactor of formate dehydrogenase from Rhodobacter capsulatus studied by X-ray absorption spectroscopy JF - Inorganic chemistry N2 - Formate dehydrogenase (FDH) enzymes are versatile catalysts for CO2 conversion. The FDH from Rhodobacter capsulatus contains a molybdenum cofactor with the dithiolene functions of two pyranopterin guanine dinucleotide molecules, a conserved cysteine, and a sulfido group bound at Mo(VI). In this study, we focused on metal oxidation state and coordination changes in response to exposure to O-2, inhibitory anions, and redox agents using X-ray absorption spectroscopy (XAS) at the Mo K-edge. Differences in the oxidative modification of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor relative to samples prepared aerobically without inhibitor, such as variations in the relative numbers of sulfido (Mo=S) and oxo (Mo=O) bonds, were observed in the presence of azide (N-3(-)) or cyanate (OCN-). Azide provided best protection against O-2, resulting in a quantitatively sulfurated cofactor with a displaced cysteine ligand and optimized formate oxidation activity. Replacement of the cysteine ligand by a formate (HCO2-) ligand at the molybdenum in active enzyme is compatible with our XAS data. Cyanide (CN-) inactivated the enzyme by replacing the sulfido ligand at Mo(VI) with an oxo ligand. Evidence that the sulfido group may become protonated upon molybdenum reduction was obtained. Our results emphasize the role of coordination flexibility at the molybdenum center during inhibitory and catalytic processes of FDH enzymes. Y1 - 2020 U6 - https://doi.org/10.1021/acs.inorgchem.9b01613 SN - 0020-1669 SN - 1520-510X VL - 59 IS - 1 SP - 214 EP - 225 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Eccard, Jana A1 - Liesenjohann, Thilo A1 - Dammhahn, Melanie T1 - Among-individual differences in foraging modulate resource exploitation under perceived predation risk JF - Oecologia N2 - Foraging is risky and involves balancing the benefits of resource acquisition with costs of predation. Optimal foraging theory predicts where, when and how long to forage in a given spatiotemporal distribution of risks and resources. However, significant variation in foraging behaviour and resource exploitation remain unexplained. Using single foragers in artificial landscapes of perceived risks and resources with diminishing returns, we aimed to test whether foraging behaviour and resource exploitation are adjusted to risk level, vary with risk during different components of foraging, and (co)vary among individuals. We quantified foraging behaviour and resource exploitation for 21 common voles (Microtus arvalis). By manipulating ground cover, we created simple landscapes of two food patches varying in perceived risk during feeding in a patch and/or while travelling between patches. Foraging of individuals was variable and adjusted to risk level and type. High risk during feeding reduced feeding duration and food consumption more strongly than risk while travelling. Risk during travelling modified the risk effects of feeding for changes between patches and resulting evenness of resource exploitation. Across risk conditions individuals differed consistently in when and how long they exploited resources and exposed themselves to risk. These among-individual differences in foraging behaviour were associated with consistent patterns of resource exploitation. Thus, different strategies in foraging-under-risk ultimately lead to unequal payoffs and might affect lower trophic levels in food webs. Inter-individual differences in foraging behaviour, i.e. foraging personalities, are an integral part of foraging behaviour and need to be fully integrated into optimal foraging theory. KW - animal personality KW - giving-up density KW - intra-specific trait variation KW - landscape of fear KW - optimal foraging KW - predation risk KW - resource KW - exploitation Y1 - 2020 U6 - https://doi.org/10.1007/s00442-020-04773-y SN - 0029-8549 SN - 1432-1939 VL - 194 IS - 4 SP - 621 EP - 634 PB - Springer CY - Berlin ER - TY - JOUR A1 - Eckert, Silvia A1 - Herden, Jasmin A1 - Stift, Marc A1 - Joshi, Jasmin Radha A1 - van Kleunen, Mark T1 - Manipulation of cytosine methylation does not remove latitudinal clines in two invasive goldenrod species in Central Europe JF - Molecular ecology N2 - Invasive species frequently differentiate phenotypically in novel environments within a few generations, often even with limited genetic variation. For the invasive plants Solidago canadensis and S. gigantea, we tested whether such differentiation might have occurred through heritable epigenetic changes in cytosine methylation. In a 2-year common-garden experiment, we grew plants from seeds collected along a latitudinal gradient in their non-native Central European range to test for trait differentiation and whether differentiation disappeared when seeds were treated with the demethylation agent zebularine. Microsatellite markers revealed no population structure along the latitudinal gradient in S. canadensis, but three genetic clusters in S. gigantea. Solidago canadensis showed latitudinal clines in flowering phenology and growth. In S. gigantea, the number of clonal offspring decreased with latitude. Although zebularine had a significant effect on early growth, probably through effects on cytosine methylation, latitudinal clines remained (or even got stronger) in plants raised from seeds treated with zebularine. Thus, our experiment provides no evidence that epigenetic mechanisms by selective cytosine methylation contribute to the observed phenotypic differentiation in invasive goldenrods in Central Europe. KW - common‐garden experiment KW - epigenetic variation KW - microsatellites KW - Solidago canadensis KW - Solidago gigantea KW - zebularine Y1 - 2020 U6 - https://doi.org/10.1111/mec.15722 SN - 0962-1083 SN - 1365-294X VL - 30 IS - 1 SP - 222 EP - 236 PB - Wiley CY - Hoboken ER -