TY - JOUR A1 - Carrapa, Barbara A1 - Mustapha, Fariq Shazanee A1 - Cosca, Michael A1 - Gehrels, George A1 - Schoenbohm, Lindsay M. A1 - Sobel, Edward A1 - DeCelles, Peter G. A1 - Russell, Joellen A1 - Goodman, Paul T1 - Multisystem dating of modern river detritus from Tajikistan and China: Implications for crustal evolution and exhumation of the Pamir JF - Lithosphere N2 - The Pamir is the western continuation of Tibet and the site of some of the highest mountains on Earth, yet comparatively little is known about its crustal and tectonic evolution and erosional history. Both Tibet and the Pamir are characterized by similar terranes and sutures that can be correlated along strike, although the details of such correlations remain controversial. The erosional history of the Pamir with respect to Tibet is significantly different as well: Most of Tibet has been characterized by internal drainage and low erosion rates since the early Cenozoic; in contrast, the Pamir is externally drained and topographically more rugged, and it has a strongly asymmetric drainage pattern. Here, we report 700 new U-Pb and Lu-Hf isotope determinations and >300 Ar-40/Ar-39 ages from detrital minerals derived from rivers in China draining the northeastern Pamir and >1000 apatite fission-track (AFT) ages from 12 rivers in Tajikistan and China draining the northeastern, central, and southern Pamir. U-Pb ages from rivers draining the northeastern Pamir are Mesozoic to Proterozoic and show affinity with the Songpan-Ganzi terrane of northern Tibet, whereas rivers draining the central and southern Pamir are mainly Mesozoic and show some affinity with the Qiangtang terrane of central Tibet. The epsilon(Hf) values are juvenile, between 15 and -5, for the northeastern Pamir and juvenile to moderately evolved, between 10 and -40, for the central and southern Pamir. Detrital mica Ar-40/Ar-39 ages for the northeastern Pamir (eastern drainages) are generally older than ages from the central and southern Pamir (western drainages), indicating younger or lower-magnitude exhumation of the northeastern Pamir compared to the central and southern Pamir. AFT data show strong Miocene-Pliocene signals at the orogen scale, indicating rapid erosion at the regional scale. Despite localized exhumation of the Mustagh-Ata and Kongur-Shan domes, average erosion rates for the northeastern Pamir are up to one order of magnitude lower than erosion rates recorded by the central and southern Pamir. Deeper exhumation of the central and southern Pamir is associated with tectonic exhumation of central Pamir domes. Deeper exhumation coincides with western and asymmetric drainages and with higher precipitation today, suggesting an orographic effect on exhumation. A younging-southward trend of cooling ages may reflect tectonic processes. Overall, cooling ages derived from the Pamir are younger than ages recorded in Tibet, indicating younger and higher magnitudes of erosion in the Pamir. Y1 - 2014 U6 - https://doi.org/10.1130/L360.1 SN - 1941-8264 SN - 1947-4253 VL - 6 IS - 6 SP - 443 EP - 455 PB - Geological Society of America CY - Boulder ER - TY - JOUR A1 - Carrapa, Barbara A1 - Reyes-Bywater, Sharon A1 - Safipour, Roxana A1 - Sobel, Edward A1 - Schoenbohm, Lindsay M. A1 - DeCelles, Peter G. A1 - Reiners, Peter W. A1 - Stockli, Daniel T1 - The effect of inherited paleotopography on exhumation of the Central Andes of NW Argentina JF - Geological Society of America bulletin N2 - Differential exhumation in the Puna Plateau and Eastern Cordillera of NW Argentina is controlled by inherited paleostructures and resulting paleotopography related to the Cretaceous Salta Rift paleomargins. The Ceno zoic deformation front related to the development of the Andean retro-arc orogenic system is generally associated with >4 km of exhumation, which is recorded by Cenozoic apatite fi ssion-track (AFT) and (U-Th-[Sm])/He ages (He ages) in the Eastern Cordillera of NW Argentina. New AFT ages from the top of the Nevado de Cachi document Oligocene (ca. 28 Ma) cooling, which, combined with existing data, indicates exhumation of this range between ca. 28 Ma and ca. 14 Ma. However, some of the highest ranges in the Eastern Cordillera preserve Cretaceous ages indicative of limited Cenozoic exhumation. Samples collected from an similar to 3-km-elevation transect along the northern part of the Sierra de Quilmes paleorift fl ank (Laguna Brava) show AFT ages between ca. 80 and ca. 50 Ma and He ages between ca. 45 and ca. 10 Ma. Another set of samples from an similar to 1-km-elevation transect farther to the southwest (La Quebrada) shows Cretaceous AFT ages between ca. 116 Ma and ca. 76 Ma, and mainly Cretaceous He ages, in agreement with AFT data. Analysis of existing AFT and He ages from the area once occupied by the Salta Rift reveals a pattern characterized by Cretaceous ages along paleorift highs and Cenozoic ages within paleorift hanging-wall basins and later foreland basin depocenters. This pattern is interrupted by the Sierras Pampeanas at similar to 28 degrees S, which record mid-Cenozoic ages. Our data are consistent with a complex inherited pattern of pre-Andean paleostructures, likely associated with paleotopography, which was beveled by the Cenozoic regional foreland basin and reactivated during the late Neogene (ca. <10 Ma), strongly controlling the magnitude of Cenozoic uplift and exhumation and thus cooling age distribution. This, combined with variable lithologic erodibility, resulted in an irregular distribution of themochronological ages. Y1 - 2014 U6 - https://doi.org/10.1130/B30844.1 SN - 0016-7606 SN - 1943-2674 VL - 126 IS - 1-2 SP - 66 EP - 77 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Schoenbohm, Lindsay M. A1 - Chen, Jie A1 - Stutz, Jamey A1 - Sobel, Edward A1 - Thiede, Rasmus Christoph A1 - Kirby, Benjamin A1 - Strecker, Manfred T1 - Glacial morphology in the Chinese Pamir: Connections among climate, erosion, topography, lithology and exhumation JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Modification of the landscape by glacial erosion reflects the dynamic interplay of climate through temperature, precipitation, and prevailing wind direction, and tectonics through rock uplift and exhumation rate, lithology, and range and fault geometry. We investigate these relationships in the northeast Pamir Mountains using mapping and dating of moraines and terraces to determine the glacial history. We analyze modem glacial morphology to determine glacier area, spacing, headwall relief, debris cover, and equilibrium line altitude (ELA) using the area x altitude balance ratio (AABR), toe-to-headwall altitude ratio (THAR) and toe-to-summit altitude method (TSAM) for 156 glaciers and compare this to lithologic, tectonic, and climatic data We observe a pronounced asymmetry in glacial ELA, area, debris cover, and headwall relief that we interpret to reflect both structural and climatic control: glaciers on the downwind (eastern) side of the range are larger, more debris covered, have steeper headwalls, and tend to erode headward, truncating the smaller glaciers of the upwind, fault-controlled side of the range. We explain this by the transfer of moisture deep into the range as wind-blown or avalanched snow and by limitations imposed on glacial area on the upwind side of the range by the geometry of the Kongur extensional system (KES). The correspondence between rapid exhumation along the KES and maxima in glacier debris cover and headwall relief and minimums in all measures of ELA suggest that taller glacier headwalls develop in a response to more rapid exhumation rates. However, we find that glaciers in the Muji valley did not extend beyond the range front until at least 43 ka, in contrast to extensive glaciation since 300 ka in the south around the high peaks, a pattern which does not clearly reflect uplift rate. Instead, the difference in glacial history and the presence of large peaks (Muztagh Ata and Kongur Shan) with flanking glaciers likely reflects lithologic control (i.e., the location of crustal gneiss domes) and the formation of peaks that rise above the ELA and escape the glacial buzzsaw. (C) 2014 Elsevier B.V. All rights reserved. KW - Pamir KW - ELA KW - Cosmogenic nuclides KW - Glaciation KW - Glacial buzzsaw KW - Tectonic-climate coupling Y1 - 2014 U6 - https://doi.org/10.1016/j.geomorph.2014.05.023 SN - 0169-555X SN - 1872-695X VL - 221 SP - 1 EP - 17 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wack, Michael R. A1 - Gilder, Stuart A. A1 - Macaulay, Euan A. A1 - Sobel, Edward A1 - Charreau, Julien A1 - Mikolaichuk, Alexander T1 - Cenozoic magnetostratigraphy and magnetic properties of the southern Issyk-Kul basin, Kyrgyzstan JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - We present paleomagnetic data from the northern flank of the Tianshan range, southeast of Lake Issyk-Kul (Kyrgyzstan). 613 cores were collected in two parallel sections with a total thickness of 960 m (Chon Kyzylsuu, CK) and 990 m Jeti Oguz, JO), as well as 48 cores at six sites in a nearby anticline. Rock magnetic analyses identify both magnetite and hematite in the fluvial-lacustrine sediments. The concentration of both minerals, the magnetite:hematite ratio, and the average magnetite grain size increase upward in both sections. Anisotropy of anhysteretic remanent magnetization defines a tectonic fabric with sub-horizontal maximum axes that parallel the strike direction together with intermediate and minimum axes that streak out about a great circle orthogonal to the maximum axes suggestive of a tectonic fabric emplaced during folding. Stepwise thermal demagnetization isolates interpretable magnetization components in 284 samples that define 26 polarity chrons in CK and 19 in JO. A positive fold test, dual polarities and systematic changes in rock-magnetic parameters with depth suggest that the high temperature magnetization component was acquired coevally with deposition. An age model based on a visual magnetostratigraphic correlation of both sections with the geomagnetic polarity time scale defines absolute ages from 26.0 to 13.3 Ma, with a fairly constant sedimentation rate of 9-10 cm/ka. A correlation based on a numerical algorithm arrives at a slightly different conclusion, with deposition ages from 25.2 to 11.0 Ma and sedimentation rates from 5 to 8 cm/ka. In comparison with sedimentation rates found at other magnetostratigraphic sections in the Tianshan realm, we infer that the sedimentary record in this part of the Issyk-Kul Basin precedes the more rapid phase of uplift of the Kyrgyz Tianshan. The onset of deposition and concomitant erosion of the adjacent Terskey Range is in good agreement with independent assessments of the exhumation history of this mountain range, with erosion increasing at 25-20 Ma and accelerating after 11-13 Ma. (C) 2014 Elsevier B.V. All rights reserved. KW - Cenozoic KW - Magnetostratigraphy KW - Rock magnetism KW - Issyk-Kul KW - Anisotropy of magnetic remanence Y1 - 2014 U6 - https://doi.org/10.1016/j.tecto.2014.03.030 SN - 0040-1951 SN - 1879-3266 VL - 629 SP - 14 EP - 26 PB - Elsevier CY - Amsterdam ER -