TY - JOUR A1 - Mooij, Wolf M. A1 - Brederveld, Robert J. A1 - de Klein, Jeroen J. M. A1 - DeAngelis, Don L. A1 - Downing, Andrea S. A1 - Faber, Michiel A1 - Gerla, Daan J. A1 - Hipsey, Matthew R. A1 - Janse, Jan H. A1 - Janssen, Annette B. G. A1 - Jeuken, Michel A1 - Kooi, Bob W. A1 - Lischke, Betty A1 - Petzoldt, Thomas A1 - Postma, Leo A1 - Schep, Sebastiaan A. A1 - Scholten, Huub A1 - Teurlincx, Sven A1 - Thiange, Christophe A1 - Trolle, Dennis A1 - van Dam, Anne A. A1 - van Gerven, Luuk P. A. A1 - van Nes, Egbert H. A1 - Kuiper, Jan J. T1 - Serving many at once: How a database approach can create unity in dynamical ecosystem modelling JF - Environmental modelling & software with environment data news N2 - Simulation modelling in ecology is a field that is becoming increasingly compartmentalized. Here we propose a Database Approach To Modelling (DATM) to create unity in dynamical ecosystem modelling with differential equations. In this approach the storage of ecological knowledge is independent of the language and platform in which the model will be run. To create an instance of the model, the information in the database is translated and augmented with the language and platform specifics. This process is automated so that a new instance can be created each time the database is updated. We describe the approach using the simple Lotka-Volterra model and the complex ecosystem model for shallow lakes PCLake, which we automatically implement in the frameworks OSIRIS, GRIND for MATLAB, ACSL, R, DUFLOW and DELWAQ. A clear advantage of working in a database is the overview it provides. The simplicity of the approach only adds to its elegance. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/). KW - Modelling framework KW - Programming language KW - Differential equation KW - Community-based modelling KW - Database approach to modelling KW - DATM Y1 - 2014 U6 - https://doi.org/10.1016/j.envsoft.2014.04.004 SN - 1364-8152 SN - 1873-6726 VL - 61 SP - 266 EP - 273 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Sachse, Rene A1 - Petzoldt, Thomas A1 - Blumstock, Maria A1 - Moreira, Santiago A1 - Paetzig, Marlene A1 - Ruecker, Jacqueline A1 - Janse, Jan H. A1 - Mooij, Wolf M. A1 - Hilt, Sabine T1 - Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality JF - Environmental modelling & software with environment data news N2 - Submerged macrophytes can stabilise clear water conditions in shallow lakes. However, many existing models for deep lakes neglect their impact. Here, we tested the hypothesis that submerged macrophytes can affect the water clarity in deep lakes. A one-dimensional, vertically resolved macrophyte model was developed based on PCLake and coupled to SALMO-1D and GOTM hydrophysics and validated against field data. Validation showed good coherence in dynamic growth patterns and colonisation depths. In our simulations the presence of submerged macrophytes resulted in up to 50% less phytoplankton biomass in the shallowest simulated lake (11 m) and still 15% less phytoplankton was predicted in 100 m deep oligotrophic lakes. Nutrient loading, lake depth, and lake shape had a strong influence on macrophyte effects. Nutrient competition was found to be the strongest biological interaction. Despite a number of limitations, the derived dynamic lake model suggests significant effects of submerged macrophytes on deep lake water quality. (C) 2014 Elsevier Ltd. All rights reserved. KW - Lake model KW - Macrophytes KW - Water quality Y1 - 2014 U6 - https://doi.org/10.1016/j.envsoft.2014.05.023 SN - 1364-8152 SN - 1873-6726 VL - 61 SP - 410 EP - 423 PB - Elsevier CY - Oxford ER -