TY - JOUR A1 - Bora, Sanjay Singh A1 - Scherbaum, Frank A1 - Kühn, Nicolas A1 - Stafford, Peter T1 - Fourier spectral- and duration models for the generation of response spectra adjustable to different source-, propagation-, and site conditions JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - One of the major challenges related with the current practice in seismic hazard studies is the adjustment of empirical ground motion prediction equations (GMPEs) to different seismological environments. We believe that the key to accommodating differences in regional seismological attributes of a ground motion model lies in the Fourier spectrum. In the present study, we attempt to explore a new approach for the development of response spectral GMPEs, which is fully consistent with linear system theory when it comes to adjustment issues. This approach consists of developing empirical prediction equations for Fourier spectra and for a particular duration estimate of ground motion which is tuned to optimize the fit between response spectra obtained through the random vibration theory framework and the classical way. The presented analysis for the development of GMPEs is performed on the recently compiled reference database for seismic ground motion in Europe (RESORCE-2012). Although, the main motivation for the presented approach is the adjustability and the use of the corresponding model to generate data driven host-to-target conversions, even as a standalone response spectral model it compares reasonably well with the GMPEs of Ambraseys et al. (Bull Earthq Eng 3:1-53, 2005), Akkar and Bommer (Seismol Res Lett 81(2):195-206, 2010) and Akkar and Cagnan (Bull Seismol Soc Am 100(6):2978-2995, 2010). KW - Ground motion prediction equation KW - Fourier amplitude spectrum KW - Duration KW - Random vibration theory KW - Response Spectrum Y1 - 2014 U6 - https://doi.org/10.1007/s10518-013-9482-z SN - 1570-761X SN - 1573-1456 VL - 12 IS - 1 SP - 467 EP - 493 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Molkenthin, Christian A1 - Scherbaum, Frank A1 - Griewank, Andreas A1 - Kuehn, Nicolas A1 - Stafford, Peter T1 - A Study of the sensitivity of response spectral amplitudes on seismological parameters using algorithmic differentiation JF - Bulletin of the Seismological Society of America N2 - Response spectra are of fundamental importance in earthquake engineering and represent a standard measure in seismic design for the assessment of structural performance. However, unlike Fourier spectral amplitudes, the relationship of response spectral amplitudes to seismological source, path, and site characteristics is not immediately obvious and might even be considered counterintuitive for high oscillator frequencies. The understanding of this relationship is nevertheless important for seismic-hazard analysis. The purpose of the present study is to comprehensively characterize the variation of response spectral amplitudes due to perturbations of the causative seismological parameters. This is done by calculating the absolute parameter sensitivities (sensitivity coefficients) defined as the partial derivatives of the model output with respect to its input parameters. To derive sensitivities, we apply algorithmic differentiation (AD). This powerful approach is extensively used for sensitivity analysis of complex models in meteorology or aerodynamics. To the best of our knowledge, AD has not been explored yet in the seismic-hazard context. Within the present study, AD was successfully implemented for a proven and extensively applied simulation program for response spectra (Stochastic Method SIMulation [SMSIM]) using the TAPENADE AD tool. We assess the effects and importance of input parameter perturbations on the shape of response spectra for different regional stochastic models in a quantitative way. Additionally, we perform sensitivity analysis regarding adjustment issues of groundmotion prediction equations. Y1 - 2014 U6 - https://doi.org/10.1785/0120140022 SN - 0037-1106 SN - 1943-3573 VL - 104 IS - 5 SP - 2240 EP - 2252 PB - Seismological Society of America CY - Albany ER -