TY - JOUR A1 - Neuschäfer-Rube, Frank A1 - Möller, Ulrike A1 - Püschel, Gerhard Paul T1 - Structure of the 5'-flanking region of the rat prostaglandin f(2alpha) receptor N2 - Prostaglandin F(2alpha) (PGF(2alpha)), modulates hepatocyte functions via a heptahelical G(q)-coupled PGF(2alpha)-receptor (FP-R) which in liver is expressed exclusively in hepatocytes. The aim of the present study was to isolate the 5'-flanking region of the rat FP-R gene and to elucidate its basal and IL-6-modulated transcription control function in rat hepatocytes. The 5'-non-translated region of the rat hepatocyte FP-R mRNA differed from the corresponding region in rat fetal astrocyte or corpus luteum. It was encoded by exons 1a and 2 which were separated by a 1. 4 kb intron containing the exons 1b and 1c coding for the 5'-untranslated region of rat fetal astrocyte and corpus luteum FP-R mRNA, respectively. The transcription initiation site in hepatocytes was localized 263 bp upstream of the start ATG by 5'-RACE. A DNA-fragment covering the 5'-flanking region of the rFP-R gene from - 1 of the transcription initiation site to -2590 bp was cloned and sequenced. Its 3'-two thirds had a 65% sequence identity to the mouse FP-R promoter however no homology to the bovine FP-R promoter. In the overlapping sequence most of the putative transcription factor binding sites were conserved between mouse and rat. The rat promoter contained no classical TATA- or CAAT-boxes but putative binding sites for the transcription factors C/EBP, GATA-1, HNF-1, HNF-3beta, SP-1, and USF. Luciferase reporter gene constructs containing portions of the 5'-flanking region were transfected into rat hepatocytes. Luciferase expression ranked -181 >/= -608 < -1418 > -1821 >/= -2590. The strongest transcriptional activity was conferred by the region between -608 and -1418 containing a cluster of potential HNF-1 and HNF-3beta binding sites that might allow the exclusive expression of FP-R mRNA in hepatocytes. The amount of FP-R mRNA and the luciferase expression under control of the -2590 promoter fragment were reduced by IL-6 in hepatocytes. Copyright 2000 Academic Press. Y1 - 2000 ER - TY - JOUR A1 - Böer, Ulrike A1 - Neuschäfer-Rube, Frank A1 - Möller, Ulrike A1 - Püschel, Gerhard Paul T1 - Requirement of N-glycosylation of the prostaglandin E2 receptor EP3beta for correct sorting to the plasma membrane but not for correct folding N2 - Eight heptahelical receptors have been characterized for prostaglandin (PG) D(2), PGE(2), PGF(2alpha), prostacyclin and thromboxane A(2). They share a sequence identity of 40%. All of them have potential N-glycosylation sites. The current study analysed the role of the two N-glycosylation sites in the rat EP3beta-subtype PGE(2) receptor for protein folding and sorting. The N-glycosylation consensus sequences were eliminated by site-directed mutagenesis and receptors expressed in HEK-293 cells. Both potential N-glycosylation sites were used. Their joint elimination resulted in the synthesis of a receptor protein with full binding competence, biological activity and no reduction of affinity; however, the half-life of the non-glycosylated receptor was slightly reduced. Ligand binding to intact stably transfected cells and confocal laser microscopic immunocytochemistry showed that the glycosylated receptor was correctly inserted into the plasma membrane to a much larger extent than the non-glycosylated receptor, which tended to accumulate in the perinuclear zone of the endoplasmic reticulum. Inhibition of N-glycosylation with tunicamycin resulted in a similar perinuclear distribution of the wild-type receptor. Therefore, glycosylation of the EP3beta receptor seems not to be necessary for correct folding of the receptor protein but for the efficient transport of the receptor protein to the plasma membrane. This contrasts with a previous finding which described a reduction of the affinity for PGE(2) of the EP3alpha receptor by elimination of the distal glycosylation site when the receptor protein was expressed in insect cells. Y1 - 2000 ER - TY - JOUR A1 - Fennekohl, Alexandra A1 - Sugimoto, Yukihiko A1 - Segi, Eri A1 - Maruyama, Takayuki A1 - Ichikawa, Atsushi A1 - Püschel, Gerhard Paul T1 - Contribution of the two Gs-coupled PGE(2)-receptors EP2-receptor and EP4-receptor to the inhibition by PGE2 of the LPS-induced TNF alpha-information in Kupffer cells from EP2-or-EP4-receptor-dficient mice : pivotal role for the EP4- receptor in wild type Kupffer cells N2 - Background/Aims: Prostaglandin E(2) (PGE(2)) is known to inhibit the lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNFalpha) formation in Kupffer cells via an increase in cAMP. Four receptor-subtypes have been cloned for PGE(2) so far. Two of them, the EP2-receptor and the EP4-receptor are linked to stimulatory Gs-proteins and could mediate the inhibition by PGE(2) of TNFalpha-formation.Methods: The significance of both receptors for PGE(2)- dependent inhibition of LPS-induced TNFalpha-formation was studied using Kupffer cells of mice in which either one of the two receptors had been eliminated by homologous recombination.Results: The mRNAs of both receptors were expressed in wild type mouse Kupffer cells. Exogenous PGE(2) inhibited TNFalpha-formation in Kupffer cells lacking either EP2-receptor or EP4-receptor to a similar extent as in control cells, however, 10-fold higher PGE(2) concentrations were needed for half maximal inhibition in cells lacking the EP4-receptor than in control or EP2-receptor- deficient cells. The response to endogenous PGE(2) was blunted in EP4-receptor-deficient mice only and especially after prolonged incubation. Conclusions: The data indicate, that PGE(2) can inhibit TNFalpha-formation via both the EP2- and the EP4-receptor and that, however, the EP4-receptor appears to be physiologically more relevant in Kupffer cells since it conferred a high affinity response to PGE(2). Y1 - 2002 ER - TY - JOUR A1 - Neuschäfer-Rube, Frank A1 - Engemaier, Eva A1 - Koch, Sina A1 - Böer, Ulrike A1 - Püschel, Gerhard Paul T1 - Identification by site-directed mutagenesis of amino acids contributing to ligand-binding specificity or signal transduction properties of the human FP prostanoid receptor N2 - Prostanoid receptors belong to the class of heptahelical plasma membrane receptors. For the five prostanoids, eight receptor subtypes have been identified. They display an overall sequence similarity of roughly 30%. Based on sequence comparison, single amino acids in different subtypes of different species have previously been identified by site-directed mutagenesis or in hybrid receptors that appear to be essential for ligand binding or G-protein coupling. Based on this information, a series of mutants of the human FP receptor was generated and characterized in ligand- binding and second-messenger-formation studies. It was found that mutation of His-81 to Ala in transmembrane domain 2 and of Arg-291 to Leu in transmembrane domain 7, which are putative interaction partners for the prostanoid's carboxyl group, abolished ligand binding. Mutants in which Ser-263 in transmembrane domain 6 or Asp-300 in transmembrane domain 7 had been replaced by Ala or Gln, respectively, no longer discriminated between prostaglandins PGF(2alpha) and PGD(2). Thus distortion of the topology of transmembrane domains 6 and 7 appears to interfere with the cyclopentane ring selectivity of the receptor. PGF(2alpha)-induced inositol formation was strongly reduced in the mutant Asp-300Gln, inferring a role for this residue in agonist-induced G-protein activation. Y1 - 2003 UR - http://www.biochemj.org/bj/371/0443/bj3710443.htm ER - TY - JOUR A1 - Böer, Ulrike A1 - Fennekohl, Alexandra A1 - Püschel, Gerhard Paul T1 - Sensitization by interleukin-6 of rat hepatocytes to tumor necrosis factor alpha-induced apoptosis N2 - BACKGROUND/AIMS: Tumor necrosis factor (TNF) elicits hepatocyte apoptosis in toxic liver injury and is also central in hepatocyte proliferation after partial hepatectomy. In both circumstances interleukin (IL)-6 levels are also elevated. In mouse liver IL-6 attenuated Fas receptor-mediated apoptosis indicating its interference with pro-apoptotic signal chains. It was, therefore, the aim to examine the modulation by IL-6 of TNFalpha-induced apoptosis in rat hepatocytes. METHODS: Primary rat hepatocytes were treated with IL-6 prior to induction of apoptosis with TNFalpha/ actinomycin D or anti-Fas antibody M-20. Apoptosis was detected by determination of caspase-3 activation and bisbenzimide staining of condensed nuclei. Expression of TNFalpha receptors was analyzed by semi-quantitative polymerase chain reaction and ligand binding studies with [125I]-TNFalpha. RESULTS: IL-6 treatment doubled TNFalpha/actinomycin D- induced caspase-3 activity and significantly enhanced chromatin condensation. By contrast IL-6 inhibited Fas-induced increase in caspase-3 activity by 45% and significantly reduced chromatin condensation. IL-6 increased the mRNA level of TNF-R1 1.35-fold and augmented cell surface binding of [125I]-TNFalpha 3-fold. The latter and TNFalpha-mediated caspase activation was attenuated by prostaglandin E(2). CONCLUSIONS: IL-6 - in contrast to its anti-apoptotic modulation of the Fas-induced pathway - exerted a pro-apoptotic effect on the TNFalpha/actinomycin D-induced apoptosis by increasing the number of TNF-R on hepatocytes. Y1 - 2003 UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12763364 ER - TY - JOUR A1 - Neuschäfer-Rube, Frank A1 - Hermosilla, Ricardo A1 - Kuna, Manuela A1 - Pathe-Neuschaefer-Rube, Andrea A1 - Püschel, Gerhard Paul T1 - Agonist-induced desensitization of rat prostaglandin EP3 receptor isoforms Y1 - 2004 SN - 0028-1298 ER - TY - JOUR A1 - Neuschäfer-Rube, Frank A1 - Hermosilla, Ricardo A1 - Rehwald, Matthias A1 - Ronnstrand, Lars A1 - Schülein, Ralf A1 - Wernstedt, Christer A1 - Püschel, Gerhard Paul T1 - Identification of a Ser/Thr cluster in the C-terminal domain of the human prostaglandin receptor EP4 that is essential for agonist-induced beta-arrestin1 recruitment but differs from the apparent principal phosphorylation site N2 - hEP4-R (human prostaglandin E2 receptor, subtype EP4) is a G(s)-linked heterotrimeric GPCR (G-protein-coupled receptor). It undergoes agonist-induced desensitization and internalization that depend on the presence of its C- terminal domain. Desensitization and internalization of GPCRs are often linked to agonist-induced beta-arrestin complex formation, which is stabilized by phosphorylation. Subsequently beta-arrestin uncouples the receptor from its G-protein and links it to the endocytotic machinery. The C-terminal domain of hEP4-R contains 38 Ser/Thr residues that represent potential phosphorylation sites. The present study aimed to analyse the relevance of these Ser/Thr residues for agonist- induced phosphorylation, interaction with beta-arrestin and internalization. In response to agonist treatment, hEP4-R was phosphorylated. By analysis of proteolytic phosphopeptides of the wild-type receptor and mutants in which groups of Ser/Thr residues had been replaced by Ala, the principal phosphorylation site was mapped to a Ser/Thr-containing region comprising residues 370-382, the presence of which was necessary and sufficient to obtain full agonist-induced phosphorylation. A cluster of Ser/Thr residues (Ser-389-Ser-390-Thr-391-Ser-392) distal to this site, but not the principal phosphorylation site, was essential to allow agonist-induced recruitment of beta-arrestin1. However, phosphorylation greatly enhanced the stability of the beta-arrestin1-receptor complexes. For maximal agonist-induced internalization, phosphorylation of the principal phosphorylation site was not required, but both beta-arrestin1 recruitment and the presence of Ser/Thr residues in the distal half of the C-terminal domain were necessary. Y1 - 2004 UR - http://www.biochemj.org/bj/379/0573/bj3790573.htm ER - TY - JOUR A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Neuschäfer-Rube, Frank A1 - Püschel, Gerhard Paul T1 - G protein coupling control by the ERC-motif in the proximal part of the second intracellular loop and the C- terminal domain of the human prostaglandin F-2A receptor (FP receptor) Y1 - 2004 SN - 0028-1298 ER - TY - JOUR A1 - Püschel, Gerhard Paul T1 - Control of hepatocyte metabolism by sympathetic and parasympathetic hepatic nerves N2 - More than any other organ, the liver contributes to maintaining metabolic equilibrium of the body, most importantly of glucose homeostasis. It can store or release large quantities of glucose according to changing demands. This homeostasis is controlled by circulating hormones and direct innervation of the liver by autonomous hepatic nerves. Sympathetic hepatic nerves can increase hepatic glucose output; they appear, however, to contribute little to the stimulation of hepatic glucose output under physiological conditions. Parasympathetic hepatic nerves potentiate the insulin-dependent hepatic glucose extraction when a portal glucose sensor detects prandial glucose delivery from the gut. In addition, they might coordinate the hepatic and extrahepatic glucose utilization to prevent hypoglycemia and, at the same time, warrant efficient disposal of excess glucose. Y1 - 2004 UR - http://www3.interscience.wiley.com/cgi-bin/abstract/109596173/ABSTRACT ER - TY - JOUR A1 - Neuschäfer-Rube, Frank A1 - Hermosilla, Ricardo A1 - Kuna, Manuela A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Schulein, R. A1 - Püschel, Gerhard Paul T1 - A Ser/Thr cluster within the C-terminal domain of the rat prostaglandin receptor EP3 alpha is essential for agonist-induced phosphorylation, desensitization and internalization N2 - 1 Two isoforms of the rat prostaglandin E-2 receptor, rEP3 alpha-R and rEP3 beta-R, differ only in their C- terminal domain. To analyze the function of the rEP3-R C-terminal domain in agonist induced desensitization, a cluster of Ser/Thr residues in the C-terminal domain of the rEP3 alpha-R was mutated to Ala and both isoforms and the receptor mutant (rEP3 alpha-ST341-349A-R) were stably expressed in HEK293 cells. 2 All rEP3-R receptors showed a similar ligand- binding profile. They were functionally coupled to Gi and reduced forskolin-induced cAMP-formation. 3 Repeated exposure of cells expressing the rEP3 alpha-R isoform to PGE(2) reduced the agonist induced inhibition of forskolin-stimulated cAMP-formation by 50% and led to internalization of the receptor to intracellular endocytotic vesicles. By contrast, Gi- response as well as plasma membrane localization of the rEP3 beta-R and the rEP3 alpha-ST341-349A-R were not affected by prior agonist-stimulation. 4 Agonist-stimulation of HEK293-rEP3 alpha-R cells induced a time- and dose-dependent phosphorylation of the receptor most likely by G protein-coupled receptor kinases and not by protein kinase A or protein kinase C. By contrast, upon agonist-stimulation the rEP3 beta-R was not phosphorylated and the rEP3 alpha-ST341-349A-R was phosphorylated only weakly. 5 These results led to the hypothesis that agonist-induced desensitization of the rEP3 alpha-R isoform is mediated most likely by a GRK-dependent phosphorylation of Ser/Thr residues 341 - 349. Phosphorylation then initiates uncoupling of the receptor from Gi protein and receptor internalization Y1 - 2005 SN - 0007-1188 ER -