TY - JOUR A1 - Zhang, Su-Yun A1 - Guo, Wen-Bin A1 - Tang, Ying-Ying A1 - Xu, Jin-Qiu A1 - He, Zhang-Zhen T1 - Observation of Spin Relaxation in a Vanadate Chloride with Quasi-One-Dimensional Linear Chain JF - Crystal growth & design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials N2 - A new cobalt(II) vanadate chloride, Pb2Co(OH)(V2O7)Cl, has been synthesized under mild hydrothermal conditions. It contains quasi-one-dimensional (1D) linear chains built by edge-sharing of (CoO6)-O-II octahedra. The cobalt(II) oxide chains are further interconnected by (V2O7)(4-) dimers into a three-dimensional (3D) anionic framework with Pb2+ and Cl- ions residing in Co4V8 12-member ring tunnels. The intrachain Co center dot center dot center dot Co distance is 3.041 angstrom, while the interchain distances are 8.742 and 9.256 angstrom. Magnetic measurements suggest the ferromagnetic intrachain and the antiferromagnetic interchain interactions with a specific value of J(intra)/J(inter) = 1.7 x 10(3). Zero-field heat capacity demonstrates the magnetic long-range ordering at 5.5 K. Alternating current (AC) magnetic susceptibility under zero external direct current (DC) fields displays two slow magnetic relaxations at low temperatures, giving characteristic relaxations (tau(0)) of 1.2(3) x 10(-12) and 1.9(4) x 10(-10) s with effective energy barriers (Delta(r)) of 76.1(2) and 48.4(5) K. The energy barrier between the spin up and spin-down states can be ascribed to the ferromagnetic spin chain and the Ising-like magnetic anisotropy in Pb2Co(OH)(V2O7)Cl. Y1 - 2019 U6 - https://doi.org/10.1021/acs.cgd.8b01839 SN - 1528-7483 SN - 1528-7505 VL - 19 IS - 4 SP - 2228 EP - 2234 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhang, Su-Yun A1 - Kochovski, Zdravko A1 - Lee, Hui-Chun A1 - Lu, Yan A1 - Zhang, Hemin A1 - Zhang, Jie A1 - Sun, Jian-Ke A1 - Yuan, Jiayin T1 - Ionic organic cage-encapsulating phase-transferable metal clusters JF - Chemical science N2 - Exploration of metal clusters (MCs) adaptive to both aqueous and oil phases without disturbing their size is promising for a broad scope of applications. The state-of-the-art approach via ligand-binding may perturb MCs' size due to varied metal–ligand binding strength when shuttling between solvents of different polarity. Herein, we applied physical confinement of a series of small noble MCs (<1 nm) inside ionic organic cages (I-Cages), which by means of anion exchange enables reversible transfer of MCs between aqueous and hydrophobic solutions without varying their ultrasmall size. Moreover, the MCs@I-Cage hybrid serves as a recyclable, reaction-switchable catalyst featuring high activity in liquid-phase NH3BH3 (AB) hydrolysis reaction with a turnover frequency (TOF) of 115 min−1. Y1 - 2019 U6 - https://doi.org/10.1039/c8sc04375b SN - 2041-6520 SN - 2041-6539 VL - 10 IS - 5 SP - 1450 EP - 1456 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zhang, T. A1 - Spitz, Christian A1 - Antonietti, Markus A1 - Faul, C. F. T1 - Highly photoluminescent polyoxometaloeuropate-surfactant complexes by ionic self-assembly N2 - Facile organization of the inorganic sandwiched heteropolytungstomolybdate K-13[Eu(SiW9Mo2O39)(2)] (E) into highly ordered supramolecular nanostructured materials by complexation with a series of cationic surfactants is achieved by the ionic self-assembly (ISA) route. The structure and phase behavior of the complexes were examined by IR spectroscopy, differential scanning calorimetry, optical microscopy, and small- and wide-angle X-ray scattering. This class of materials shows a number of interesting physicochemical properties, namely liquid-crystalline phases (both thermotropic and lyotropic) and strong photoluminescence. The photophysical behavior (fluorescence spectra, fluorescence lifetimes, fluorescence quantum yield) of the complexes differs widely in solid powders, films, and solutions. The amphiphilic cationic surfactants not only play a structural role but also have a strong influence on the photophysical properties of E. The photophysical behavior of E can in this way be easily modified by its organizational motifs Y1 - 2005 ER - TY - JOUR A1 - Zhang, Weiyi A1 - Willa, Christoph A1 - Sun, Jian-Ke A1 - Guterman, Ryan A1 - Taubert, Andreas A1 - Yuan, Jiayin T1 - Polytriazolium poly(ionic liquid) bearing triiodide anions: Synthesis, basic properties and electrochemical behaviors JF - Polymer : the international journal for the science and technology of polymers N2 - 4-Methyl-1-vinyl-1,2,4-triazolium triiodide ionic liquid and its polymer poly(4-methyl-1-vinyl-1,2,4-triazolium) triiodide were prepared for the first time from their iodide precursors via the reaction of iodide (I-) with elemental iodine (I-2). The change from iodide to triiodide (I-3(-)) was found to introduce particular variations in the physical properties of these two compounds, including lower melting point/glass transition temperature and altered solubility. The compounds were characterized by single-crystal X-ray diffraction, elemental analysis, and their electrochemical properties examined in solution and in the solid-state. Compared with their iodide analogues, the triiodide salts exhibited lower electrical impedance and higher current in the cyclic voltammetry. We found that poly(4-methyl-1,2,4-triazolium triiodide) was proven to be a promising solid polymer electrolyte candidate. (C) 2017 Elsevier Ltd. All rights reserved. KW - Poly(ionic liquid) KW - Solid polymer electrolyte KW - Grotthuss mechanism KW - Triiodide "network" Y1 - 2017 U6 - https://doi.org/10.1016/j.polymer.2017.07.059 SN - 0032-3861 SN - 1873-2291 VL - 124 SP - 246 EP - 251 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zhao, Yuhang A1 - Opitz, Andreas A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Koch, Norbert A1 - Lu, Yan T1 - Kinetic study on the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Ag nanoparticles in chloroform BT - implications for the charge transfer complex of Ag-F(4)TCNQ JF - ACS applied nano materials N2 - In this study, the kinetics of the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been intensively investigated, as molecular doping is known to play a crucial role in organic electronic devices. Based on the results obtained from UV-visible (vis)-near-infrared (NIR) absorption spectroscopy, cryogenic transmission electron microscopy, scanning nanobeam electron diffraction, and electron energy loss spectroscopy, a two-step interaction kinetics has been proposed for the Ag NPs and F(4)TCNQ molecules, which includes the first step of electron transfer from Ag NPs to F(4)TCNQ indicated by the ionization of F(4)TCNQ and the second step of the formation of a Ag-F(4)TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F(4)TCNQ molecules on the interaction between Ag NPs and F(4)TCNQ molecules in an organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs manifests that the charge transfer at the surface between Ag NPs and F(4)TCNQ molecules is prohibited by a silica layer of 18 nm. KW - Ag nanoparticles KW - F(4)TCNQ KW - phase transfer KW - kinetics KW - electron transfer KW - surface interaction Y1 - 2021 U6 - https://doi.org/10.1021/acsanm.1c02153 SN - 2574-0970 VL - 4 IS - 11 SP - 11625 EP - 11635 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhao, Yuhang A1 - Sarhan, Radwan Mohamed A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Schmidt, Bernd A1 - Koopman, Wouter-Willem Adriaan A1 - Lu, Yan T1 - Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance JF - ACS applied materials & interfaces N2 - Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration. KW - Au-Pd nanorods KW - PDA KW - photothermal conversion KW - surface plasmon KW - 4-nitrophenol Y1 - 2022 U6 - https://doi.org/10.1021/acsami.2c00221 SN - 1944-8244 SN - 1944-8252 VL - 14 IS - 15 SP - 17259 EP - 17272 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Zheng, Botuo A1 - Bai, Tianwen A1 - Tao, Xinfeng A1 - Schlaad, Helmut A1 - Ling, Jun T1 - Identifying the Hydrolysis of Carbonyl Sulfide as a Side Reaction Impeding the Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Polypeptoids are noticeable biological materials due to their versatile properties and various applications in drug delivery, surface modification, self-assembly, etc. N-Substituted glycine N-thiocarboxyanhydrides (NNTAs) are more stable monomers than the corresponding N-carboxyanhydrides (NNCAs) and enable one to prepare polypeptoids via ring-opening polymerization even in the presence of water. However, larger amounts of water (>10,000 ppm) cause inhibition of the polymerization. Herein, we discover that during polymerization hydrogen sulfide evolves from the hydrolysis of carbonyl sulfide, which is the byproduct of ring-opening reaction, and reacts with NNTA to produce cyclic oligopeptoids. The capture of N-ethylethanethioic acid as an intermediate product confirms the reaction mechanism together with density functional theory quantum computational results. By bubbling the polymerization solution with argon, the side reaction can be suppressed to allow the synthesis of polysarcosine with high molar mass (M-n = 11,200 g/mol, D = 1.25) even in the presence of similar to 10,000 ppm of water. Y1 - 2018 U6 - https://doi.org/10.1021/acs.biomac.8b01119 SN - 1525-7797 SN - 1526-4602 VL - 19 IS - 11 SP - 4263 EP - 4269 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhong, Qi A1 - Adelsberger, Joseph A1 - Niedermeier, M. A. A1 - Golosova, Anastasi A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, André A1 - Funari, S. S. A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - The influence of selective solvents on the transition behavior of poly(styrene-b-monomethoxydiethylenglycol-acrylate-b-styrene) thick films JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - Thick poly(styrene-b-monomethoxydiethylenglycol-acrylate-b-styrene) [P(S-b-MDEGA-b-S)] films (thickness 5 mu m) are prepared from different solvents on flexible substrates by solution casting and investigated with small-angle X-ray scattering. As the solvents are either PS- or PMDEGA-selective, micelles with different core-shell micellar structures are formed. In PMDEGA-selective solvents, the PS block is the core and PMDEGA is the shell, whereas in PS-selective solvents, the order is reversed. After exposing the films to liquid D2O, the micellar structure inside the films prepared from PMDEGA-selective solvents remains unchanged and only the PMDEGA (shell part) swells. On the contrary, in the films prepared from PS-selective solvents, the micelles revert the core and the shell. This reversal causes more entanglements of the PMDEGA chains between the micelles. Moreover, the thermal collapse transition of the PMDEGA block in liquid D2O is significantly broadened. Irrespective of the solvent used for film preparation, the swollen PMDEGA shell does not show a prominent shrinkage when passing the phase transition, and the transition process occurs via compaction. The collapsed micelles have a tendency to densely pack above the transition temperature. KW - Hydrogel KW - Thin film KW - Thermo-responsive KW - LCST behavior KW - SAXS Y1 - 2013 U6 - https://doi.org/10.1007/s00396-012-2879-4 SN - 0303-402X VL - 291 IS - 6 SP - 1439 EP - 1451 PB - Springer CY - New York ER - TY - JOUR A1 - Zhong, Qi A1 - Metwalli, Ezzeldin A1 - Kaune, Gunar A1 - Rawolle, Monika A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Cubitt, Robert A1 - Müller-Buschbaum, Peter T1 - Switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) probed with in situ neutron reflectivity JF - Soft matter N2 - The switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) (PMDEGA) are investigated. Homogeneous and smooth PMDEGA films with a thickness of 35.9 nm are prepared on silicon substrates by spin coating. As probed with white light interferometry, PMDEGA films with a thickness of 35.9 nm exhibit a phase transition temperature of the lower critical solution temperature (LCST) type of 40 degrees C. In situ neutron reflectivity is performed to investigate the thermo-responsive behavior of these PMDEGA hydrogel films in response to a sudden thermal stimulus in deuterated water vapor atmosphere. The collapse transition proceeds in a complex way which can be seen as three steps. The first step is the shrinkage of the initially swollen film by a release of water. In the second step the thickness remains constant with water molecules embedded in the film. In the third step, perhaps due to a conformational rearrangement of the collapsed PMDEGA chains, water is reabsorbed from the vapor atmosphere, thereby giving rise to a relaxation process. Both the shrinkage and relaxation processes can be described by a simple model of hydrogel deswelling. Y1 - 2012 U6 - https://doi.org/10.1039/c2sm25401h SN - 1744-683X VL - 8 IS - 19 SP - 5241 EP - 5249 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zhong, Qi A1 - Metwalli, Ezzeldin A1 - Rawolle, Monika A1 - Kaune, Gunar A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, Andre A1 - Papadakis, Christine M. A1 - Cubitt, Robert A1 - Wang, Jiping A1 - Müller-Buschbaum, Peter T1 - Vacuum induced dehydration of swollen poly(methoxy diethylene glycol acrylate) and polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films probed by in-situ neutron reflectivity JF - Polymer : the international journal for the science and technology of polymers N2 - The isothermal vacuum-induced dehydration of thin films made of poly(methoxy diethylene glycol acrylate) (PMDEGA), which were swollen under ambient conditions, is studied. The dehydration behavior of the homopolymer film as well as of a nanostructured film of the amphiphilic triblock copolymer polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene, abbreviated as PS-b-PMDEGA-b-PS, are probed, and compared to the thermally induced dehydration behavior of such thin thermo-responsive films when they pass through their LCST-type coil-to globule collapse transition. The dehydration kinetics is followed by in-situ neutron reflectivity measurements. Contrast results from the use of deuterated water. Water content and film thickness are significantly reduced during the process, which can be explained by Schott second order kinetics theory for both films. The water content of the dehydrated equilibrium state from this model is very close to the residual water content obtained from the final static measurements, indicating that residual water still remains in the film even after prolonged exposure to the vacuum. In the PS-b-PMDEGA-b-PS film that shows micro-phase separation, the hydrophobic PS domains modify the dehydration process by hindering the water removal, and thus retarding dehydration by about 30%. Whereas residual water remains tightly bound in the PMDEGA domains, water is completely removed from the PS domains of the block copolymer film. (C) 2017 Elsevier Ltd. All rights reserved. KW - Dehydration KW - Vacuum drying KW - In-situ neutron reflectivity Y1 - 2017 U6 - https://doi.org/10.1016/j.polymer.2017.07.066 SN - 0032-3861 SN - 1873-2291 VL - 124 SP - 263 EP - 273 PB - Elsevier CY - Oxford ER -