TY - JOUR A1 - Pingel, Patrick A1 - Arvind, Malavika A1 - Kölln, Lisa A1 - Steyrleuthner, Robert A1 - Kraffert, Felix A1 - Behrends, Jan A1 - Janietz, Silvia A1 - Neher, Dieter T1 - p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane JF - Advanced electronic materials N2 - State-of-the-art p-type doping of organic semiconductors is usually achieved by employing strong -electron acceptors, a prominent example being tetrafluorotetracyanoquinodimethane (F(4)TCNQ). Here, doping of the semiconducting model polymer poly(3-hexylthiophene), P3HT, using the strong Lewis acid tris(pentafluorophenyl)borane (BCF) as a dopant, is investigated by admittance, conductivity, and electron paramagnetic resonance measurements. The electrical characteristics of BCF- and F(4)TCNQ-doped P3HT layers are shown to be very similar in terms of the mobile hole density and the doping efficiency. Roughly 18% of the employed dopants create mobile holes in either F-4 TCNQ- or BCF-doped P3HT, while the majority of doping-induced holes remain strongly Coulomb-bound to the dopant anions. Despite similar hole densities, conductivity and hole mobility are higher in BCF-doped P3HT layers than in F(4)TCNQ-doped samples. This and the good solubility in many organic solvents render BCF very useful for p-type doping of organic semiconductors. KW - charge carrier transport KW - charge transfer KW - conductivity KW - molecular doping KW - organic semiconductors Y1 - 2016 U6 - https://doi.org/10.1002/aelm.201600204 SN - 2199-160X VL - 2 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Hahn, Tobias A1 - Tscheuschner, Steffen A1 - Saller, Christina A1 - Strohriegl, Peter A1 - Boregowda, Puttaraju A1 - Mukhopadhyay, Tushita A1 - Patil, Satish A1 - Neher, Dieter A1 - Bässler, Heinz A1 - Köhler, Anna T1 - Role of Intrinsic Photogeneration in Single Layer and Bilayer Solar Cells with C-60 and PCBM JF - The journal of physical chemistry : C, Nanomaterials and interfaces Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b08471 SN - 1932-7447 VL - 120 SP - 25083 EP - 25091 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zerson, Mario A1 - Neumann, Martin A1 - Steyrleuthner, Robert A1 - Neher, Dieter A1 - Magerle, Robert T1 - Surface Structure of Semicrystalline Naphthalene Diimide-Bithiophene Copolymer Films Studied with Atomic Force Microscopy JF - Macromolecules : a publication of the American Chemical Society Y1 - 2016 U6 - https://doi.org/10.1021/acs.macromol.6b00988 SN - 0024-9297 SN - 1520-5835 VL - 49 SP - 6549 EP - 6557 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Armin, Ardalan A1 - Philippa, Bronson A1 - Neher, Dieter T1 - The Role of Space Charge Effects on the Competition between Recombination and Extraction in Solar Cells with Low-Mobility Photoactive Layers JF - The journal of physical chemistry letters N2 - The competition between charge extraction and nongeminate recombination critically determines the current-voltage characteristics of organic solar cells (OSCs) and their fill factor. As a measure of this competition, several figures of merit (FOMs) have been put forward; however, the impact of space charge effects has been either neglected, or not specifically addressed. Here we revisit recently reported FOMs and discuss the role of space charge effects on the interplay between recombination and extraction. We find that space charge effects are the primary cause for the onset of recombination in so-called non-Langevin systems, which also depends on the slower carrier mobility and recombination coefficient. The conclusions are supported with numerical calculations and experimental results of 25 different donor/acceptor OSCs with different charge transport parameters, active layer thicknesses or composition ratios. The findings represent a conclusive understanding of bimolecular recombination for drift dominated photocurrents and allow one to minimize these losses for given device parameters. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpclett.6b02106 SN - 1948-7185 VL - 7 SP - 4716 EP - 4721 PB - American Chemical Society CY - Washington ER -