TY - JOUR A1 - Chen, Zupeng A1 - Savateev, Aleksandr A1 - Pronkin, Sergey A1 - Papaefthimiou, Vasiliki A1 - Wolff, Christian Michael A1 - Willinger, Marc Georg A1 - Willinger, Elena A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Dontsova, Dariya T1 - "The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts JF - Advanced materials N2 - Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger. KW - carbon nitride KW - glycerol oxidation KW - mesocrystals KW - poly(heptazine imide) KW - water reduction reactions Y1 - 2017 U6 - https://doi.org/10.1002/adma.201700555 SN - 0935-9648 SN - 1521-4095 VL - 29 SP - 21800 EP - 21806 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber JF - Solar RRL N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 VL - 4 IS - 7 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Kniepert, Juliane A1 - Lange, Ilja A1 - van der Kaap, Niels J. A1 - Koster, L. Jan Anton A1 - Neher, Dieter T1 - A conclusive view on charge generation, recombination, and extraction in As-prepared and annealed P3HT:PCBM blends: combined experimental and simulation work JF - dvanced energy materials N2 - Time-delayed collection field (TDCF) and bias-amplified charge extraction (BACE) are applied to as-prepared and annealed poly(3-hexylthiophene):[6,6]-phenyl C-71 butyric acid methyl ester (P3HT:PCBM) blends coated from chloroform. Despite large differences in fill factor, short-circuit current, and power conversion efficiency, both blends exhibit a negligible dependence of photogeneration on the electric field and strictly bimolecular recombination (BMR) with a weak dependence of the BMR coefficient on charge density. Drift-diffusion simulations are performed using the measured coefficients and mobilities, taking into account bimolecular recombination and the possible effects of surface recombination. The excellent agreement between the simulation and the experimental data for an intensity range covering two orders of magnitude indicates that a field-independent generation rate and a density-independent recombination coefficient describe the current-voltage characteristics of the annealed P3HT: PCBM devices, while the performance of the as-prepared blend is shown to be limited by space charge effects due to a low hole mobility. Finally, even though the bimolecular recombination coefficient is small, surface recombination is found to be a negligible loss mechanism in these solar cells. Y1 - 2014 U6 - https://doi.org/10.1002/aenm.201301401 SN - 1614-6832 SN - 1614-6840 VL - 4 IS - 7 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kietzke, Thomas A1 - Neher, Dieter A1 - Kumke, Michael Uwe A1 - Montenegro, Rivelino V. D. A1 - Landfester, Katharina A1 - Scherf, Ullrich T1 - A nanoparticle approach to control the phase separation in polyfluorene photovoltaic devices N2 - Polymer solar cell devices with nanostructured blend layers have been fabricated using single- and dual- component polymer nanospheres. Starting from an electron-donating and an electron-accepting polyfluorene derivative, PFB and F8BT, dissolved in suitable organic solvents, dispersions of solid particles with mean diameters of ca. 50 nm, containing either the pure polymer components or a mixture of PFB and F8BT in each particle, were prepared with the miniemulsion process. Photovoltaic devices based on these particles have been studied with respect to the correlation between external quantum efficiency and layer composition. It is shown that the properties of devices containing a blend of single-component PFB and F8BT particles differ significantly from those of solar cells based on blend particles, even for the same layer composition. Various factors determining the quantum efficiency in both kinds of devices are identified and discussed, taking into account the spectroscopic properties of the particles. An external quantum efficiency of ca. 4% is measured for a device made from polymer blend nanoparticles containing PFB:F8BT at a weight ratio of 1:2 in each individual nanosphere. This is among the highest values reported so far for photovoltaic cells using this material combination Y1 - 2004 ER - TY - JOUR A1 - Neher, Dieter A1 - Kniepert, Juliane A1 - Elimelech, Arik A1 - Koster, L. Jan Anton T1 - A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents JF - Scientific reports N2 - Compared to their inorganic counterparts, organic semiconductors suffer from relatively low charge carrier mobilities. Therefore, expressions derived for inorganic solar cells to correlate characteristic performance parameters to material properties are prone to fail when applied to organic devices. This is especially true for the classical Shockley-equation commonly used to describe current-voltage (JV)-curves, as it assumes a high electrical conductivity of the charge transporting material. Here, an analytical expression for the JV-curves of organic solar cells is derived based on a previously published analytical model. This expression, bearing a similar functional dependence as the Shockley-equation, delivers a new figure of merit α to express the balance between free charge recombination and extraction in low mobility photoactive materials. This figure of merit is shown to determine critical device parameters such as the apparent series resistance and the fill factor. KW - Electronic and spintronic devices KW - Semiconductors Y1 - 2016 U6 - https://doi.org/10.1038/srep24861 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Neher, Dieter A1 - Kniepert, Juliane A1 - Elimelech, Arik A1 - Koster, L. Jan Anton T1 - A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents JF - Scientific reports N2 - Compared to their inorganic counterparts, organic semiconductors suffer from relatively low charge carrier mobilities. Therefore, expressions derived for inorganic solar cells to correlate characteristic performance parameters to material properties are prone to fail when applied to organic devices. This is especially true for the classical Shockley-equation commonly used to describe current-voltage (JV)-curves, as it assumes a high electrical conductivity of the charge transporting material. Here, an analytical expression for the JV-curves of organic solar cells is derived based on a previously published analytical model. This expression, bearing a similar functional dependence as the Shockley-equation, delivers a new figure of merit a to express the balance between free charge recombination and extraction in low mobility photoactive materials. This figure of merit is shown to determine critical device parameters such as the apparent series resistance and the fill factor. Y1 - 2016 U6 - https://doi.org/10.1038/srep24861 SN - 2045-2322 VL - 6 SP - E2348 EP - E2349 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Inal, Sahika A1 - Kölsch, Jonas D. A1 - Selrie, Frank A1 - Schenk, Jörg A. A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Neher, Dieter T1 - A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein N2 - We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/tb/c3tb21245a U6 - https://doi.org/10.1039/c3tb21245a ER - TY - JOUR A1 - Inal, Sahika A1 - Kölsch, Jonas D. A1 - Sellrie, Frank A1 - Schenk, Jörg A. A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Neher, Dieter T1 - A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein JF - Journal of materials chemistry : B, Materials for biology and medicine N2 - We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing. Y1 - 2013 U6 - https://doi.org/10.1039/c3tb21245a SN - 2050-750X SN - 2050-7518 VL - 1 IS - 46 SP - 6373 EP - 6381 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Vandewal, Koen A1 - Benduhn, Johannes A1 - Schellhammer, Karl Sebastian A1 - Vangerven, Tim A1 - Rückert, Janna E. A1 - Piersimoni, Fortunato A1 - Scholz, Reinhard A1 - Zeika, Olaf A1 - Fan, Yeli A1 - Barlow, Stephen A1 - Neher, Dieter A1 - Marder, Seth R. A1 - Manca, Jean A1 - Spoltore, Donato A1 - Cuniberti, Gianaurelio A1 - Ortmann, Frank T1 - Absorption Tails of Donor BT - C-60 Blends Provide Insight into Thermally Activated Charge-Transfer Processes and Polaron Relaxation JF - Journal of the American Chemical Society N2 - In disordered organic semiconductors, the transfer of a rather localized charge carrier from one site to another triggers a deformation of the molecular structure quantified by the intramolecular relaxation energy. A similar structural relaxation occurs upon population of intermolecular charge-transfer (CT) states formed at organic electron donor (D)-acceptor (A) interfaces. Weak CT absorption bands for D A complexes occur at photon energies below the optical gaps of both the donors and the C-60 acceptor as a result of optical transitions from the neutral ground state to the ionic CT state. In this work, we show that temperature-activated intramolecular vibrations of the ground state play a major role in determining the line shape of such CT absorption bands. This allows us to extract values for the relaxation energy related to the geometry change from neutral to ionic CT complexes. Experimental values for the relaxation energies of 20 D:C-60 CT complexes correlate with values calculated within density functional theory. These results provide an experimental method for determining the polaron relaxation energy in solid-state organic D-A blends and show the importance of a reduced relaxation energy, which we introduce to characterize thermally activated CT processes. Y1 - 2017 U6 - https://doi.org/10.1021/jacs.6b12857 SN - 0002-7863 VL - 139 IS - 4 SP - 1699 EP - 1704 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Steyrleuthner, Robert A1 - Schubert, Marcel A1 - Howard, Ian A1 - Klaumünzer, Bastian A1 - Schilling, Kristian A1 - Chen, Zhihua A1 - Saalfrank, Peter A1 - Laquai, Frederic A1 - Facchetti, Antonio A1 - Neher, Dieter T1 - Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology JF - Journal of the American Chemical Society N2 - We explore the photophysics of P(NDI2OD-T2), a high-mobility and air-stable n-type donor/acceptor polymer. Detailed steady-state UV-vis and photoluminescence (PL) measurements on solutions of P(NDI2OD-T2) reveal distinct signatures of aggregation. By performing quantum chemical calculations, we can assign these spectral features to unaggregated and stacked polymer chains. NMR measurements independently confirm the aggregation phenomena of P(NDI2OD-T2) in solution. The detailed analysis of the optical spectra shows that aggregation is a two-step process with different types of aggregates, which we confirm by time-dependent PL measurements. Analytical ultracentrifugation measurements suggest that aggregation takes place within the single polymer chain upon coiling. By transferring these results to thin P(NDI2OD-T2) films, we can conclude that film formation is mainly governed by the chain collapse, leading in general to a high aggregate content of similar to 45%. This process also inhibits the formation of amorphous and disordered P(NDI2OD-T2) films. Y1 - 2012 U6 - https://doi.org/10.1021/ja306844f SN - 0002-7863 VL - 134 IS - 44 SP - 18303 EP - 18317 PB - American Chemical Society CY - Washington ER -