TY - JOUR A1 - Georgiev, Vasil N. A1 - Grafmüller, Andrea A1 - Bléger, David A1 - Hecht, Stefan A1 - Kunstmann, Sonja A1 - Barbirz, Stefanie A1 - Lipowsky, Reinhard A1 - Dimova, Rumiana T1 - Area increase and budding in giant vesicles triggered by light BT - behind the scene JF - Advanced science N2 - Biomembranes are constantly remodeled and in cells, these processes are controlled and modulated by an assortment of membrane proteins. Here, it is shown that such remodeling can also be induced by photoresponsive molecules. The morphological control of giant vesicles in the presence of a water-soluble ortho-tetrafluoroazobenzene photoswitch (F-azo) is demonstrated and it is shown that the shape transformations are based on an increase in membrane area and generation of spontaneous curvature. The vesicles exhibit budding and the buds can be retracted by using light of a different wavelength. In the presence of F-azo, the membrane area can increase by more than 5% as assessed from vesicle electrodeformation. To elucidate the underlying molecular mechanism and the partitioning of F-azo in the membrane, molecular dynamics simulations are employed. Comparison with theoretically calculated shapes reveals that the budded shapes are governed by curvature elasticity, that the spontaneous curvature can be decomposed into a local and a nonlocal contribution, and that the local spontaneous curvature is about 1/(2.5 mu m). The results show that exo- and endocytotic events can be controlled by light and that these photoinduced processes provide an attractive method to change membrane area and morphology. KW - azobenzene KW - lipid membranes KW - molecular dynamics KW - photoswitch KW - vesicles Y1 - 2018 U6 - https://doi.org/10.1002/advs.201800432 SN - 2198-3844 VL - 5 IS - 8 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Clahsen, Harald A1 - Paulmann, Silke A1 - Budd, Mary-Jane A1 - Barry, Christopher T1 - Morphological encoding beyond slots and fillers BT - an ERP study of comparative formation in English JF - PLoS one N2 - One important organizational property of morphology is competition. Different means of expression are in conflict with each other for encoding the same grammatical function. In the current study, we examined the nature of this control mechanism by testing the formation of comparative adjectives in English during language production. Event-related brain potentials (ERPs) were recorded during cued silent production, the first study of this kind for comparative adjective formation. We specifically examined the ERP correlates of producing synthetic relative to analytic comparatives, e.g. angriervs. more angry. A frontal, bilaterally distributed, enhanced negative-going waveform for analytic comparatives (vis-a-vis synthetic ones) emerged approximately 300ms after the (silent) production cue. We argue that this ERP effect reflects a control mechanism that constrains grammatically-based computational processes (viz. more comparative formation). We also address the possibility that this particular ERP effect may belong to a family of previously observed negativities reflecting cognitive control monitoring, rather than morphological encoding processes per se. Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0199897 SN - 1932-6203 VL - 13 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Sultana, Zakia A1 - Sieg, Tobias A1 - Kellermann, Patric A1 - Müller, Meike A1 - Kreibich, Heidi T1 - Assessment of business interruption of flood-affected companies using random forests JF - Water N2 - Losses due to floods have dramatically increased over the past decades, and losses of companies, comprising direct and indirect losses, have a large share of the total economic losses. Thus, there is an urgent need to gain more quantitative knowledge about flood losses, particularly losses caused by business interruption, in order to mitigate the economic loss of companies. However, business interruption caused by floods is rarely assessed because of a lack of sufficiently detailed data. A survey was undertaken to explore processes influencing business interruption, which collected information on 557 companies affected by the severe flood in June 2013 in Germany. Based on this data set, the study aims to assess the business interruption of directly affected companies by means of a Random Forests model. Variables that influence the duration and costs of business interruption were identified by the variable importance measures of Random Forests. Additionally, Random Forest-based models were developed and tested for their capacity to estimate business interruption duration and associated costs. The water level was found to be the most important variable influencing the duration of business interruption. Other important variables, relating to the estimation of business interruption duration, are the warning time, perceived danger of flood recurrence and inundation duration. In contrast, the amount of business interruption costs is strongly influenced by the size of the company, as assessed by the number of employees, emergency measures undertaken by the company and the fraction of customers within a 50 km radius. These results provide useful information and methods for companies to mitigate their losses from business interruption. However, the heterogeneity of companies is relatively high, and sector-specific analyses were not possible due to the small sample size. Therefore, further sector-specific analyses on the basis of more flood loss data of companies are recommended. KW - business interruption KW - floods KW - Random Forests KW - companies KW - variable importance Y1 - 2018 U6 - https://doi.org/10.3390/w10081049 SN - 2073-4441 VL - 10 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Grieve, Stuart W. D. A1 - Hales, Tristram C. A1 - Parker, Robert N. A1 - Mudd, Simon M. A1 - Clubb, Fiona J. T1 - Controls on Zero-Order Basin Morphology JF - Journal of geophysical research : Earth surface N2 - Zero-order basins are common features of soil-mantled landscapes, defined as unchanneled basins at the head of a drainage network. Their geometry and volume control how quickly sediment may reaccumulate after landslide evacuation and, more broadly, zero order basins govern the movement of water and sediment from hillslopes to the fluvial network. They also deliver water and sediment to the uppermost portions of the fluvial network. Despite this role as the moderator between hillslope and fluvial processes, little analysis on their morphology has been conducted at the landscape scale. We present a method to identify zero-order basins in landscapes and subsequently quantify their geometric properties using elliptical Fourier analysis. We deploy this method across the Coweeta Hydrologic Laboratory, USA. Properties such as length, relief, width, and concavity follow distinct probability distributions, which may serve as a basis for testing predictions of future landscape evolution models. Surprisingly, in a landscape with an orographic precipitation gradient and large hillslope to channel relief, we observe no correlation between elevation or spatial location and basin geometry. However, we find that two physiographic units in Coweeta have distinct zero-order basin morphologies. These are the steep, thin soiled, high-elevation Nantahala Escarpment and the lower-gradient, lower-elevation, thick soiled remainder of the basin. Our results indicate that basin slope and area negatively covary, producing the distinct forms observed between the two physiographic units, which we suggest arise through competition between spatially variable soil creep and stochastic landsliding. KW - zero-order basin KW - landslide KW - hillslope geomorphology KW - landscape evolution modeling KW - lidar KW - hillslope sediment transport Y1 - 2018 U6 - https://doi.org/10.1029/2017JF004453 SN - 2169-9003 SN - 2169-9011 VL - 123 IS - 12 SP - 3269 EP - 3291 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Merks, Anne Margarete A1 - Swinarski, Marie A1 - Meyer, Alexander Matthias A1 - Müller, Nicola Victoria A1 - Özcan, Ismail A1 - Donat, Stefan A1 - Burger, Alexa A1 - Gilbert, Stephen A1 - Mosimann, Christian A1 - Abdelilah-Seyfried, Salim A1 - Panakova, Daniela T1 - Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity JF - Nature Communications N2 - Development of a multiple-chambered heart from the linear heart tube is inherently linked to cardiac looping. Although many molecular factors regulating the process of cardiac chamber ballooning have been identified, the cellular mechanisms underlying the chamber formation remain unclear. Here, we demonstrate that cardiac chambers remodel by cell neighbour exchange of cardiomyocytes guided by the planar cell polarity (PCP) pathway triggered by two non-canonical Wnt ligands, Wnt5b and Wnt11. We find that PCP signalling coordinates the localisation of actomyosin activity, and thus the efficiency of cell neighbour exchange. On a tissue-scale, PCP signalling planar-polarises tissue tension by restricting the actomyosin contractility to the apical membranes of outflow tract cells. The tissue-scale polarisation of actomyosin contractility is required for cardiac looping that occurs concurrently with chamber ballooning. Taken together, our data reveal that instructive PCP signals couple cardiac chamber expansion with cardiac looping through the organ-scale polarisation of actomyosin-based tissue tension. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-04566-1 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Förster, Daniel W. A1 - Henneberger, Kirstin A1 - Meyer, Matthias A1 - Nickel, Birgit A1 - Nagel, Doris A1 - Worsøe Havmøller, Rasmus A1 - Baryshnikov, Gennady F. A1 - Joger, Ulrich A1 - Rosendahl, Wilfried A1 - Hofreiter, Michael T1 - Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations JF - BMC Evolutionary Biology N2 - Background Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? Results In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. Conclusions The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies. KW - Ancient DNA KW - Hybridisation capture KW - Leopards KW - Mitochondrial genomes KW - Mitogenomes KW - mtDNA KW - Palaeogenetics KW - Panthera pardus Y1 - 2018 U6 - https://doi.org/10.1186/s12862-018-1268-0 SN - 1471-2148 VL - 18 IS - 156 PB - BioMed Central und Springer CY - London, Berlin und Heidelberg ER - TY - JOUR A1 - Stettner, Samuel A1 - Lantuit, Hugues A1 - Heim, Birgit A1 - Eppler, Jayson A1 - Roth, Achim A1 - Bartsch, Annett A1 - Rabus, Bernhard T1 - TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of small arctic catchments BT - a case study on qikiqtaruk (Herschel Island), Canada JF - Remote sensing N2 - The timing of snowmelt is an important turning point in the seasonal cycle of small Arctic catchments. The TerraSAR-X (TSX) satellite mission is a synthetic aperture radar system (SAR) with high potential to measure the high spatiotemporal variability of snow cover extent (SCE) and fractional snow cover (FSC) on the small catchment scale. We investigate the performance of multi-polarized and multi-pass TSX X-Band SAR data in monitoring SCE and FSC in small Arctic tundra catchments of Qikiqtaruk (Herschel Island) off the Yukon Coast in the Western Canadian Arctic. We applied a threshold based segmentation on ratio images between TSX images with wet snow and a dry snow reference, and tested the performance of two different thresholds. We quantitatively compared TSX- and Landsat 8-derived SCE maps using confusion matrices and analyzed the spatiotemporal dynamics of snowmelt from 2015 to 2017 using TSX, Landsat 8 and in situ time lapse data. Our data showed that the quality of SCE maps from TSX X-Band data is strongly influenced by polarization and to a lesser degree by incidence angle. VH polarized TSX data performed best in deriving SCE when compared to Landsat 8. TSX derived SCE maps from VH polarization detected late lying snow patches that were not detected by Landsat 8. Results of a local assessment of TSX FSC against the in situ data showed that TSX FSC accurately captured the temporal dynamics of different snow melt regimes that were related to topographic characteristics of the studied catchments. Both in situ and TSX FSC showed a longer snowmelt period in a catchment with higher contributions of steep valleys and a shorter snowmelt period in a catchment with higher contributions of upland terrain. Landsat 8 had fundamental data gaps during the snowmelt period in all 3 years due to cloud cover. The results also revealed that by choosing a positive threshold of 1 dB, detection of ice layers due to diurnal temperature variations resulted in a more accurate estimation of snow cover than a negative threshold that detects wet snow alone. We find that TSX X-Band data in VH polarization performs at a comparable quality to Landsat 8 in deriving SCE maps when a positive threshold is used. We conclude that TSX data polarization can be used to accurately monitor snowmelt events at high temporal and spatial resolution, overcoming limitations of Landsat 8, which due to cloud related data gaps generally only indicated the onset and end of snowmelt. KW - Snow Cover Extent (SCE) KW - TerraSAR-X KW - Landsat KW - wet snow KW - small Arctic catchments KW - satellite time series Y1 - 2018 U6 - https://doi.org/10.3390/rs10071155 SN - 2072-4292 VL - 10 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - van Velzen, Ellen A1 - Gaedke, Ursula T1 - Reversed predator BT - prey cycles are driven by the amplitude of prey oscillations JF - Ecology and Evolution N2 - Ecoevolutionary feedbacks in predator–prey systems have been shown to qualitatively alter predator–prey dynamics. As a striking example, defense–offense coevolution can reverse predator–prey cycles, so predator peaks precede prey peaks rather than vice versa. However, this has only rarely been shown in either model studies or empirical systems. Here, we investigate whether this rarity is a fundamental feature of reversed cycles by exploring under which conditions they should be found. For this, we first identify potential conditions and parameter ranges most likely to result in reversed cycles by developing a new measure, the effective prey biomass, which combines prey biomass with prey and predator traits, and represents the prey biomass as perceived by the predator. We show that predator dynamics always follow the dynamics of the effective prey biomass with a classic ¼‐phase lag. From this key insight, it follows that in reversed cycles (i.e., ¾‐lag), the dynamics of the actual and the effective prey biomass must be in antiphase with each other, that is, the effective prey biomass must be highest when actual prey biomass is lowest, and vice versa. Based on this, we predict that reversed cycles should be found mainly when oscillations in actual prey biomass are small and thus have limited impact on the dynamics of the effective prey biomass, which are mainly driven by trait changes. We then confirm this prediction using numerical simulations of a coevolutionary predator–prey system, varying the amplitude of the oscillations in prey biomass: Reversed cycles are consistently associated with regions of parameter space leading to small‐amplitude prey oscillations, offering a specific and highly testable prediction for conditions under which reversed cycles should occur in natural systems. KW - coevolution KW - ecoevolutionary dynamics KW - predator-prey dynamics KW - top-down control Y1 - 2018 U6 - https://doi.org/10.1002/ece3.4184 SN - 2045-7758 SP - 1 EP - 13 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Reeg, Jette A1 - Heine, Simon A1 - Mihan, Christine A1 - McGee, Sean A1 - Preuss, Thomas G. A1 - Jeltsch, Florian T1 - Simulation of herbicide impacts on a plant community BT - comparing model predictions of the plant community model IBC-grass to empirical data JF - Environmental Sciences Europe N2 - Background Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. Results We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. Conclusion The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment. KW - Plant community model KW - Non-target terrestrial plants KW - Community-level effects KW - Herbicide risk assessment KW - Individual-based modeling Y1 - 2018 U6 - https://doi.org/10.1186/s12302-018-0174-9 SN - 2190-4715 SN - 2190-4707 VL - 30 IS - 44 PB - Springer CY - Berlin und Heidelberg ER - TY - JOUR A1 - Cestnik, Rok A1 - Rosenblum, Michael T1 - Inferring the phase response curve from observation of a continuously perturbed oscillator JF - Scientific Reports N2 - Phase response curves are important for analysis and modeling of oscillatory dynamics in various applications, particularly in neuroscience. Standard experimental technique for determining them requires isolation of the system and application of a specifically designed input. However, isolation is not always feasible and we are compelled to observe the system in its natural environment under free-running conditions. To that end we propose an approach relying only on passive observations of the system and its input. We illustrate it with simulation results of an oscillator driven by a stochastic force. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-32069-y SN - 2045-2322 VL - 8 SP - 1 EP - 10 PB - Nature Publishing Group CY - London ER -