TY - JOUR A1 - Ahmad, Nadeem A1 - Shoaib, Umar A1 - Prinetto, Paolo T1 - Usability of Online Assistance From Semiliterate Users' Perspective JF - International journal of human computer interaction Y1 - 2015 U6 - https://doi.org/10.1080/10447318.2014.925772 SN - 1044-7318 SN - 1532-7590 VL - 31 IS - 1 SP - 55 EP - 64 PB - Taylor & Francis Group CY - Philadelphia ER - TY - JOUR A1 - Barnes, Jan A1 - Kennewell, Steve T1 - Teacher Perceptions of Key Competencies in ICT JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - Regardless of what is intended by government curriculum specifications and advised by educational experts, the competencies taught and learned in and out of classrooms can vary considerably. In this paper, we discuss in particular how we can investigate the perceptions that individual teachers have of competencies in ICT, and how these and other factors may influence students’ learning. We report case study research which identifies contradictions within the teaching of ICT competencies as an activity system, highlighting issues concerning the object of the curriculum, the roles of the participants and the school cultures. In a particular case, contradictions in the learning objectives between higher order skills and the use of application tools have been resolved by a change in the teacher’s perceptions which have not led to changes in other aspects of the activity system. We look forward to further investigation of the effects of these contradictions in other case studies and on forthcoming curriculum change. KW - ICT competencies KW - Teacher perceptions KW - Activity Theory KW - Contradictions Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82604 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 61 EP - 75 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Bottino, Rosa A1 - Chioccariello, Augusto T1 - Computational Thinking BT - Videogames, Educational Robotics, and other Powerful Ideas to Think with JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - Digital technology has radically changed the way people work in industry, finance, services, media and commerce. Informatics has contributed to the scientific and technological development of our society in general and to the digital revolution in particular. Computational thinking is the term indicating the key ideas of this discipline that might be included in the key competencies underlying the curriculum of compulsory education. The educational potential of informatics has a history dating back to the sixties. In this article, we briefly revisit this history looking for lessons learned. In particular, we focus on experiences of teaching and learning programming. However, computational thinking is more than coding. It is a way of thinking and practicing interactive dynamic modeling with computers. We advocate that learners can practice computational thinking in playful contexts where they can develop personal projects, for example building videogames and/or robots, share and discuss their construction with others. In our view, this approach allows an integration of computational thinking in the K-12 curriculum across disciplines. KW - Computational thinking KW - programming in context KW - informatics education Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82820 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 301 EP - 309 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Bröker, Kathrin A1 - Kastens, Uwe A1 - Magenheim, Johannes T1 - Competences of Undergraduate Computer Science Students JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - The paper presents two approaches to the development of a Computer Science Competence Model for the needs of curriculum development and evaluation in Higher Education. A normativetheoretical approach is based on the AKT and ACM/IEEE curriculum and will be used within the recommendations of the German Informatics Society (GI) for the design of CS curricula. An empirically oriented approach refines the categories of the first one with regard to specific subject areas by conducting content analysis on CS curricula of important universities from several countries. The refined model will be used for the needs of students’ e-assessment and subsequent affirmative action of the CS departments. KW - Competences KW - Competence Measurement KW - Curriculum Development KW - Computer Science Education KW - Recommendations for CS-Curricula in Higher Education Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82613 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 77 EP - 96 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Büchner, Steffen T1 - Empirical and Normative Research on Fundamental Ideas of Embedded System Development JF - KEYCIT 2014 - Key Competencies in Informatics and ICT KW - Theory KW - Embedded Systems KW - Fundamental Ideas Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82949 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 393 EP - 396 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Childs, Dorothee A1 - Grimbs, Sergio A1 - Selbig, Joachim T1 - Refined elasticity sampling for Monte Carlo-based identification of stabilizing network patterns JF - Bioinformatics N2 - Motivation: Structural kinetic modelling (SKM) is a framework to analyse whether a metabolic steady state remains stable under perturbation, without requiring detailed knowledge about individual rate equations. It provides a representation of the system's Jacobian matrix that depends solely on the network structure, steady state measurements, and the elasticities at the steady state. For a measured steady state, stability criteria can be derived by generating a large number of SKMs with randomly sampled elasticities and evaluating the resulting Jacobian matrices. The elasticity space can be analysed statistically in order to detect network positions that contribute significantly to the perturbation response. Here, we extend this approach by examining the kinetic feasibility of the elasticity combinations created during Monte Carlo sampling. Results: Using a set of small example systems, we show that the majority of sampled SKMs would yield negative kinetic parameters if they were translated back into kinetic models. To overcome this problem, a simple criterion is formulated that mitigates such infeasible models. After evaluating the small example pathways, the methodology was used to study two steady states of the neuronal TCA cycle and the intrinsic mechanisms responsible for their stability or instability. The findings of the statistical elasticity analysis confirm that several elasticities are jointly coordinated to control stability and that the main source for potential instabilities are mutations in the enzyme alpha-ketoglutarate dehydrogenase. Y1 - 2015 U6 - https://doi.org/10.1093/bioinformatics/btv243 SN - 1367-4803 SN - 1460-2059 VL - 31 IS - 12 SP - 214 EP - 220 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Christensen, Rhonda A1 - Knezek, Gerald T1 - The Technology Proficiency Self-Assessment Questionnaire (TPSA) BT - Evolution of a Self-Efficacy Measure for Technology Integration JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - The Technology Proficiency Self-Assessment (TPSA) questionnaire has been used for 15 years in the USA and other nations as a self-efficacy measure for proficiencies fundamental to effective technology integration in the classroom learning environment. Internal consistency reliabilities for each of the five-item scales have typically ranged from .73 to .88 for preservice or inservice technology-using teachers. Due to changing technologies used in education, researchers sought to renovate partially obsolete items and extend self-efficacy assessment to new areas, such as social media and mobile learning. Analysis of 2014 data gathered on a new, 34 item version of the TPSA indicates that the four established areas of email, World Wide Web (WWW), integrated applications, and teaching with technology continue to form consistent scales with reliabilities ranging from .81 to .93, while the 14 new items gathered to represent emerging technologies and media separate into two scales, each with internal consistency reliabilities greater than .9. The renovated TPSA is deemed to be worthy of continued use in the teaching with technology context. KW - Technology proficiency KW - self-efficacy KW - teacher competencies Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82838 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 311 EP - 318 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Curzon, Paul T1 - Unplugged Computational Thinking for Fun JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - Computational thinking is a fundamental skill set that is learned by studying Informatics and ICT. We argue that its core ideas can be introduced in an inspiring and integrated way to both teachers and students using fun and contextually rich cs4fn ‘Computer Science for Fun’ stories combined with ‘unplugged’ activities including games and magic tricks. We also argue that understanding people is an important part of computational thinking. Computational thinking can be fun for everyone when taught in kinaesthetic ways away from technology. KW - Computational thinking KW - cs4fn KW - ‘unplugged’ computing KW - kinaesthetic teaching KW - fun Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82575 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 15 EP - 27 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - CHAP A1 - Curzon, Paul A1 - Kalas, Ivan A1 - Schubert, Sigrid A1 - Schaper, Niclas A1 - Barnes, Jan A1 - Kennewell, Steve A1 - Bröker, Kathrin A1 - Kastens, Uwe A1 - Magenheim, Johannes A1 - Dagiene, Valentina A1 - Stupuriene, Gabriele A1 - Ellis, Jason Brent A1 - Abreu-Ellis, Carla Reis A1 - Grillenberger, Andreas A1 - Romeike, Ralf A1 - Haugsbakken, Halvdan A1 - Jones, Anthony A1 - Lewin, Cathy A1 - McNicol, Sarah A1 - Nelles, Wolfgang A1 - Neugebauer, Jonas A1 - Ohrndorf, Laura A1 - Schaper, Niclas A1 - Schubert, Sigrid A1 - Opel, Simone A1 - Kramer, Matthias A1 - Trommen, Michael A1 - Pottbäcker, Florian A1 - Ilaghef, Youssef A1 - Passig, David A1 - Tzuriel, David A1 - Kedmi, Ganit Eshel A1 - Saito, Toshinori A1 - Webb, Mary A1 - Weigend, Michael A1 - Bottino, Rosa A1 - Chioccariello, Augusto A1 - Christensen, Rhonda A1 - Knezek, Gerald A1 - Gioko, Anthony Maina A1 - Angondi, Enos Kiforo A1 - Waga, Rosemary A1 - Ohrndorf, Laura A1 - Or-Bach, Rachel A1 - Preston, Christina A1 - Younie, Sarah A1 - Przybylla, Mareen A1 - Romeike, Ralf A1 - Reynolds, Nicholas A1 - Swainston, Andrew A1 - Bendrups, Faye A1 - Sysło, Maciej M. A1 - Kwiatkowska, Anna Beata A1 - Zieris, Holger A1 - Gerstberger, Herbert A1 - Müller, Wolfgang A1 - Büchner, Steffen A1 - Opel, Simone A1 - Schiller, Thomas A1 - Wegner, Christian A1 - Zender, Raphael A1 - Lucke, Ulrike A1 - Diethelm, Ira A1 - Syrbe, Jörn A1 - Lai, Kwok-Wing A1 - Davis, Niki A1 - Eickelmann, Birgit A1 - Erstad, Ola A1 - Fisser, Petra A1 - Gibson, David A1 - Khaddage, Ferial A1 - Knezek, Gerald A1 - Micheuz, Peter A1 - Kloos, Carlos Delgado ED - Brinda, Torsten ED - Reynolds, Nicholas ED - Romeike, Ralf ED - Schwill, Andreas T1 - KEYCIT 2014 BT - key competencies in informatics and ICT N2 - In our rapidly changing world it is increasingly important not only to be an expert in a chosen field of study but also to be able to respond to developments, master new approaches to solving problems, and fulfil changing requirements in the modern world and in the job market. In response to these needs key competencies in understanding, developing and using new digital technologies are being brought into focus in school and university programmes. The IFIP TC3 conference "KEYCIT – Key Competences in Informatics and ICT (KEYCIT 2014)" was held at the University of Potsdam in Germany from July 1st to 4th, 2014 and addressed the combination of key competencies, Informatics and ICT in detail. The conference was organized into strands focusing on secondary education, university education and teacher education (organized by IFIP WGs 3.1 and 3.3) and provided a forum to present and to discuss research, case studies, positions, and national perspectives in this field. T3 - Commentarii informaticae didacticae (CID) - 7 KW - Schlüsselkompetenzen KW - Informatik KW - Bildung KW - ICT KW - Informatikdidaktik KW - Key Competencies KW - Informatics KW - education KW - ICT KW - Computer Science Education Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-70325 SN - 978-3-86956-292-6 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Dagiene, Valentina A1 - Stupuriene, Gabriele T1 - Informatics Education based on Solving Attractive Tasks through a Contest JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - The paper discusses the issue of supporting informatics (computer science) education through competitions for lower and upper secondary school students (8–19 years old). Competitions play an important role for learners as a source of inspiration, innovation, and attraction. Running contests in informatics for school students for many years, we have noticed that the students consider the contest experience very engaging and exciting as well as a learning experience. A contest is an excellent instrument to involve students in problem solving activities. An overview of infrastructure and development of an informatics contest from international level to the national one (the Bebras contest on informatics and computer fluency, originated in Lithuania) is presented. The performance of Bebras contests in 23 countries during the last 10 years showed an unexpected and unusually high acceptance by school students and teachers. Many thousands of students participated and got a valuable input in addition to their regular informatics lectures at school. In the paper, the main attention is paid to the developed tasks and analysis of students’ task solving results in Lithuania. KW - Informatics Education KW - Computer Science Education KW - Tasks KW - Tests KW - Contest KW - Problem Solving KW - Cognitive Skills KW - Bloom’s Taxonomy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82626 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 97 EP - 115 PB - Universitätsverlag Potsdam CY - Potsdam ER -