TY - JOUR A1 - Stiegler, Jonas A1 - Pahl, Janice A1 - Guillen, Rafael Arce A1 - Ullmann, Wiebke A1 - Blaum, Niels T1 - The heat is on BT - impacts of rising temperature on the activity of a common European mammal JF - Frontiers in Ecology and Evolution N2 - Climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe. Wildlife can respond to new climatic conditions, but the pace of human-induced change limits opportunities for adaptation or migration. Thus, how these changes affect behavior, movement patterns, and activity levels remains unclear. In this study, we investigate how extreme weather conditions affect the activity of European hares (Lepus europaeus) during their peak reproduction period. When hares must additionally invest energy in mating, prevailing against competitors, or lactating, we investigated their sensitivities to rising temperatures, wind speed, and humidity. To quantify their activity, we used the overall dynamic body acceleration (ODBA) calculated from tri-axial acceleration measurements of 33 GPS-collared hares. Our analysis revealed that temperature, humidity, and wind speed are important in explaining changes in activity, with a strong response for high temperatures above 25 & DEG;C and the highest change in activity during temperature extremes of over 35 & DEG;C during their inactive period. Further, we found a non-linear relationship between temperature and activity and an interaction of activity changes between day and night. Activity increased at higher temperatures during the inactive period (day) and decreased during the active period (night). This decrease was strongest during hot tropical nights. At a stage of life when mammals such as hares must substantially invest in reproduction, the sensitivity of females to extreme temperatures was particularly pronounced. Similarly, both sexes increased their activity at high humidity levels during the day and low wind speeds, irrespective of the time of day, while the effect of humidity was stronger for males. Our findings highlight the importance of understanding the complex relationships between extreme weather conditions and mammal behavior, critical for conservation and management. With ongoing climate change, extreme weather events such as heat waves and heavy rainfall are predicted to occur more often and last longer. These events will directly impact the fitness of hares and other wildlife species and hence the population dynamics of already declining populations across Europe. KW - activity KW - ODBA KW - animal tracking KW - European hare KW - extreme weather events KW - climate change Y1 - 2023 U6 - https://doi.org/10.3389/fevo.2023.1193861 SN - 2296-701X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Schwieder, Marcel A1 - Wesemeyer, Maximilian A1 - Frantz, David A1 - Pfoch, Kira A1 - Erasmi, Stefan A1 - Pickert, Jürgen A1 - Nendel, Claas A1 - Hostert, Patrick T1 - Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series JF - Remote sensing of environment N2 - Spatially explicit knowledge on grassland extent and management is critical to understand and monitor the impact of grassland use intensity on ecosystem services and biodiversity. While regional studies allow detailed insights into land use and ecosystem service interactions, information on a national scale can aid biodiversity assessments. However, for most European countries this information is not yet widely available. We used an analysis-ready-data cube that contains dense time series of co-registered Sentinel-2 and Landsat 8 data, covering the extent of Germany. We propose an algorithm that detects mowing events in the time series based on residuals from an assumed undisturbed phenology, as an indicator of grassland use intensity. A self-adaptive ruleset enabled to account for regional variations in land surface phenology and non-stationary time series on a pixelbasis. We mapped mowing events for the years from 2017 to 2020 for permanent grassland areas in Germany. The results were validated on a pixel level in four of the main natural regions in Germany based on reported mowing events for a total of 92 (2018) and 78 (2019) grassland parcels. Results for 2020 were evaluated with combined time series of Landsat, Sentinel-2 and PlanetScope data. The mean absolute percentage error between detected and reported mowing events was on average 40% (2018), 36% (2019) and 35% (2020). Mowing events were on average detected 11 days (2018), 7 days (2019) and 6 days (2020) after the reported mowing. Performance measures varied between the different regions of Germany, and lower accuracies were found in areas that are revisited less frequently by Sentinel-2. Thus, we assessed the influence of data availability and found that the detection of mowing events was less influenced by data availability when at least 16 cloud-free observations were available in the grassland season. Still, the distribution of available observations throughout the season appeared to be critical. On a national scale our results revealed overall higher shares of less intensively mown grasslands and smaller shares of highly intensively managed grasslands. Hotspots of the latter were identified in the alpine foreland in Southern Germany as well as in the lowlands in the Northwest of Germany. While these patterns were stable throughout the years, the results revealed a tendency to lower management intensity in the extremely dry year 2018. Our results emphasize the ability of the approach to map the intensity of grassland management throughout large areas despite variations in data availability and environmental conditions. KW - Analysis-ready data KW - Big data KW - Large-area mapping KW - Germany KW - Common agricultural policy KW - Time series KW - Land use intensity KW - Optical remote sensing KW - Multi-spectral data KW - PlanetScope Y1 - 2022 U6 - https://doi.org/10.1016/j.rse.2021.112795 SN - 0034-4257 SN - 1879-0704 VL - 269 PB - Elsevier CY - New York ER - TY - JOUR A1 - Alshareef, Nouf Owdah A1 - Otterbach, Sophie L. A1 - Allu, Annapurna Devi A1 - Woo, Yong H. A1 - de Werk, Tobias A1 - Kamranfar, Iman A1 - Müller-Röber, Bernd A1 - Tester, Mark A1 - Balazadeh, Salma A1 - Schmöckel, Sandra M. T1 - NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis JF - Scientific reports N2 - Pre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. 'Thermomemory' is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/ CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Ara bidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like atafl, anac055 mutants show improved thermomemory, revealing a potential co-control of both NACTFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-14429-x SN - 2045-2322 VL - 12 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Hoang, Yen A1 - Gryzik, Stefanie A1 - Hoppe, Ines A1 - Rybak, Alexander A1 - Schädlich, Martin A1 - Kadner, Isabelle A1 - Walther, Dirk A1 - Vera, Julio A1 - Radbruch, Andreas A1 - Groth, Detlef A1 - Baumgart, Sabine A1 - Baumgrass, Ria T1 - PRI: Re-analysis of a public mass cytometry dataset reveals patterns of effective tumor treatments JF - Frontiers in immunology N2 - Recently, mass cytometry has enabled quantification of up to 50 parameters for millions of cells per sample. It remains a challenge to analyze such high-dimensional data to exploit the richness of the inherent information, even though many valuable new analysis tools have already been developed. We propose a novel algorithm "pattern recognition of immune cells (PRI)" to tackle these high-dimensional protein combinations in the data. PRI is a tool for the analysis and visualization of cytometry data based on a three or more-parametric binning approach, feature engineering of bin properties of multivariate cell data, and a pseudo-multiparametric visualization. Using a publicly available mass cytometry dataset, we proved that reproducible feature engineering and intuitive understanding of the generated bin plots are helpful hallmarks for re-analysis with PRI. In the CD4(+)T cell population analyzed, PRI revealed two bin-plot patterns (CD90/CD44/CD86 and CD90/CD44/CD27) and 20 bin plot features for threshold-independent classification of mice concerning ineffective and effective tumor treatment. In addition, PRI mapped cell subsets regarding co-expression of the proliferation marker Ki67 with two major transcription factors and further delineated a specific Th1 cell subset. All these results demonstrate the added insights that can be obtained using the non-cluster-based tool PRI for re-analyses of high-dimensional cytometric data. KW - multi-parametric analysis KW - re-analysis KW - combinatorial protein KW - expression KW - high-dimensional cytometry data KW - mass cytometry data KW - pattern perception Y1 - 2022 U6 - https://doi.org/10.3389/fimmu.2022.849329 SN - 1664-3224 VL - 13 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Tian, Fang A1 - Qin, Wen A1 - Zhang, Ran A1 - Herzschuh, Ulrike A1 - Ni, Jian A1 - Zhang, Chengjun A1 - Mischke, Steffen A1 - Cao, Xianyong T1 - Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years JF - Vegetation history and archaeobotany N2 - The terrestrial ecosystem in the Yellow River Source Area (YRSA) is sensitive to climate change and human impacts, although past vegetation change and the degree of human disturbance are still largely unknown. A 170-cm-long sediment core covering the last 7,400 years was collected from Lake Xingxinghai (XXH) in the YRSA. Pollen, together with a series of other environmental proxies (including grain size, total organic carbon (TOC) and carbonate content), were analysed to explore past vegetation and environmental changes for the YRSA. Dominant and common pollen components-Cyperaceae, Poaceae, Artemisia, Chenopodiaceae and Asteraceae-are stable throughout the last 7,400 years. Slight vegetation change is inferred from an increasing trend of Cyperaceae and decreasing trend of Poaceae, suggesting that alpine steppe was replaced by alpine meadow at ca. 3.5 ka cal bp. The vegetation transformation indicates a generally wetter climate during the middle and late Holocene, which is supported by increased amounts of TOC and Pediastrum (representing high water-level) and is consistent with previous past climate records from the north-eastern Tibetan Plateau. Our results find no evidence of human impact on the regional vegetation surrounding XXH, hence we conclude the vegetation change likely reflects the regional climate signal. KW - Pollen KW - Lake Xingxinghai KW - Tibetan Plateau KW - Holocene KW - Vegetation change KW - Regional climate Y1 - 2022 U6 - https://doi.org/10.1007/s00334-022-00870-5 SN - 0939-6314 SN - 1617-6278 VL - 31 IS - 6 SP - 549 EP - 558 PB - Springer CY - New York ER - TY - JOUR A1 - Vatova, Mariyana A1 - Rubin, Conrad A1 - Grossart, Hans-Peter A1 - Goncalves, Susana C. A1 - Schmidt, Susanne I. A1 - Jarić, Ivan T1 - Aquatic fungi: largely neglected targets for conservation JF - Frontiers in ecology and the environment Y1 - 2022 U6 - https://doi.org/10.1002/fee.2495 SN - 1540-9295 SN - 1540-9309 VL - 20 IS - 4 SP - 207 EP - 209 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Glückler, Ramesh A1 - Geng, Rongwei A1 - Grimm, Lennart A1 - Baisheva, Izabella A1 - Herzschuh, Ulrike A1 - Stoof-Leichsenring, Kathleen R. A1 - Kruse, Stefan A1 - Andreev, Andrej Aleksandrovic A1 - Pestryakova, Luidmila A1 - Dietze, Elisabeth T1 - Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies JF - Frontiers in Ecology and Evolution N2 - Wildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forest structure toward the Late Holocene. Whereas the Early Holocene was characterized by postglacial open larch-birch woodlands, forest structure changed toward the modern, mixed larch-dominated closed-canopy forest during the Mid-Holocene. We propose a potential relationship between open woodlands and high amounts of burnt biomass, as well as a mediating effect of dense larch forest on the climate-driven intensification of fire regimes. Considering the anticipated increase in forest disturbances (droughts, insect invasions, and wildfires), higher tree mortality may force the modern state of the forest to shift toward an open woodland state comparable to the Early Holocene. Such a shift in forest structure may result in a positive feedback on currently intensifying wildfires. These new long-term data improve our understanding of millennial-scale fire regime changes and their relationships to changes of vegetation in Central Yakutia, where the local population is already being confronted with intensifying wildfire seasons. KW - fire KW - larch KW - boreal KW - forest KW - Russia KW - charcoal KW - pollen KW - ancient DNA Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.962906 SN - 2296-701X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Welke, Robert-William A1 - Sperber, Hannah Sabeth A1 - Bergmann, Ronny A1 - Koikkarah, Amit A1 - Menke, Laura A1 - Sieben, Christian A1 - Krüger, Detlev H. A1 - Chiantia, Salvatore A1 - Herrmann, Andreas A1 - Schwarzer, Roland T1 - Characterization of hantavirus N protein intracellular dynamics and localization JF - Viruses N2 - Hantaviruses are enveloped viruses that possess a tri-segmented, negative-sense RNA genome. The viral S-segment encodes the multifunctional nucleocapsid protein (N), which is involved in genome packaging, intracellular protein transport, immunoregulation, and several other crucial processes during hantavirus infection. In this study, we generated fluorescently tagged N protein constructs derived from Puumalavirus (PUUV), the dominant hantavirus species in Central, Northern, and Eastern Europe. We comprehensively characterized this protein in the rodent cell line CHO-K1, monitoring the dynamics of N protein complex formation and investigating co-localization with host proteins as well as the viral glycoproteins Gc and Gn. We observed formation of large, fibrillar PUUV N protein aggregates, rapidly coalescing from early punctate and spike-like assemblies. Moreover, we found significant spatial correlation of N with vimentin, actin, and P-bodies but not with microtubules. N constructs also co-localized with Gn and Gc albeit not as strongly as the glycoproteins associated with each other. Finally, we assessed oligomerization of N constructs, observing efficient and concentration-dependent multimerization, with complexes comprising more than 10 individual proteins. KW - hantavirus KW - N protein KW - oligomerization KW - actin KW - P-bodies KW - vimentin KW - Number and Brightness KW - Puumalavirus KW - macromolecular assemblies Y1 - 2022 U6 - https://doi.org/10.3390/v14030457 SN - 1999-4915 VL - 14 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kamali, Bahareh A1 - Jahanbakhshi, Farshid A1 - Dogaru, Diana A1 - Dietrich, Jörg A1 - Nendel, Claas A1 - AghaKouchak, Amir T1 - Probabilistic modeling of crop-yield loss risk under drought: a spatial showcase for sub-Saharan Africa JF - Environmental research letters N2 - Assessing the risk of yield loss in African drought-affected regions is key to identify feasible solutions for stable crop production. Recent studies have demonstrated that Copula-based probabilistic methods are well suited for such assessment owing to reasonably inferring important properties in terms of exceedance probability and joint dependence of different characterization. However, insufficient attention has been given to quantifying the probability of yield loss and determining the contribution of climatic factors. This study applies the Copula theory to describe the dependence between drought and crop yield anomalies for rainfed maize, millet, and sorghum crops in sub-Saharan Africa (SSA). The environmental policy integrated climate model, calibrated with Food and Agriculture Organization country-level yield data, was used to simulate yields across SSA (1980-2012). The results showed that the severity of yield loss due to drought had a higher magnitude than the severity of drought itself. Sensitivity analysis to identify factors contributing to drought and high-temperature stresses for all crops showed that the amount of precipitation during vegetation and grain filling was the main driver of crop yield loss, and the effect of temperature was stronger for sorghum than for maize and millet. The results demonstrate the added value of probabilistic methods for drought-impact assessment. For future studies, we recommend looking into factors influencing drought and high-temperature stresses as individual/concurrent climatic extremes. KW - Copula theory KW - crop model KW - drought stress KW - joint probability KW - risk Y1 - 2022 U6 - https://doi.org/10.1088/1748-9326/ac4ec1 SN - 1748-9326 VL - 17 IS - 2 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Kamali, Bahareh A1 - Lorite, Ignacio J. A1 - Webber, Heidi A. A1 - Rezaei, Ehsan Eyshi A1 - Gabaldon-Leal, Clara A1 - Nendel, Claas A1 - Siebert, Stefan A1 - Ramirez-Cuesta, Juan Miguel A1 - Ewert, Frank A1 - Ojeda, Jonathan J. T1 - Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain JF - Scientific reports N2 - This study investigates the main drivers of uncertainties in simulated irrigated maize yield under historical conditions as well as scenarios of increased temperatures and altered irrigation water availability. Using APSIM, MONICA, and SIMPLACE crop models, we quantified the relative contributions of three irrigation water allocation strategies, three sowing dates, and three maize cultivars to the uncertainty in simulated yields. The water allocation strategies were derived from historical records of farmer's allocation patterns in drip-irrigation scheme of the Genil-Cabra region, Spain (2014-2017). By considering combinations of allocation strategies, the adjusted R-2 values (showing the degree of agreement between simulated and observed yields) increased by 29% compared to unrealistic assumptions of considering only near optimal or deficit irrigation scheduling. The factor decomposition analysis based on historic climate showed that irrigation strategies was the main driver of uncertainty in simulated yields (66%). However, under temperature increase scenarios, the contribution of crop model and cultivar choice to uncertainty in simulated yields were as important as irrigation strategy. This was partially due to different model structure in processes related to the temperature responses. Our study calls for including information on irrigation strategies conducted by farmers to reduce the uncertainty in simulated yields at field scale. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-08056-9 SN - 2045-2322 VL - 12 IS - 1 PB - Macmillan Publishers Limited, CY - London ER -