TY - THES A1 - Lever, Fabiano T1 - Probing the ultrafast dynamics of 2-Thiouracil with soft x-rays T1 - Untersuchung der ultraschnellen Dynamik von 2-Thiouracil mit weicher Röntgenstrahlung N2 - Understanding the changes that follow UV-excitation in thionucleobases is of great importance for the study of light-induced DNA lesions and, in a broader context, for their applications in medicine and biochemistry. Their ultrafast photophysical reactions can alter the chemical structure of DNA - leading to damages to the genetic code - as proven by the increased skin cancer risk observed for patients treated with thiouracil for its immunosuppressant properties. In this thesis, I present four research papers that result from an investigation of the ultrafast dynamics of 2-thiouracil by means of ultrafast x-ray probing combined with electron spectroscopy. A molecular jet in the gas phase is excited with a uv pulse and then ionized with x-ray radiation from a Free Electron Laser. The kinetic energy of the emitted electrons is measured in a magnetic bottle spectrometer. The spectra of the measured photo and Auger electrons are used to derive a picture of the changes in the geometrical and electronic configurations. The results allow us to look at the dynamical processes from a new perspective, thanks to the element- and site- sensitivity of x-rays. The custom-built URSA-PQ apparatus used in the experiment is described. It has been commissioned and used at the FL24 beamline of the FLASH2 FEL, showing an electron kinetic energy resolution of ∆E/E ~ 40 and a pump-probe timing resolution of 190 f s. X-ray only photoelectron and Auger spectra of 2-thiouracil are extracted from the data and used as reference. Photoelectrons following the formation a 2p core hole are identified, as well as resonant and non-resonant Auger electrons. At the L 1 edge, Coster-Kronig decay is observed from the 2s core hole. The UV-induced changes in the 2p photoline allow the study the electronic-state dynamics. With the use of an Excited-State Chemical Shift (ESCS) model, we observe a ultrafast ground-state relaxation within 250 f s. Furthermore, an oscillation with a 250 f s period is observed in the 2p binding energy, showing a coherent population exchange between electronic states. Auger electrons from the 2p core hole are analyzed and used to deduce a ultrafast C −S bond expansion on a sub 100 f s scale. A simple Coulomb-model, coupled to quantum chemical calculations, can be used to infer the geometrical changes in the molecular structure. N2 - Das Verständnis von lichtinduzierten, molekularen Prozessen ist über die Physik hinaus in einem breiten Kondext für Medizin und Biochemie relevant. Die ultraschnellen, photophysikalischen Reaktionen mancher Moleküle können die chemische Struktur von DNA verändern und somit genetischen Code schädigen. So führt zum Beispiel die UV-Anregung von Thionukleobasen zu Läsionen der DNA in den Zellen. Dementsprechend zeigen Patienten ein erhöhtes Hautkrebsrisiko, wenn sie im Rahmen einer immunsuppressiven Therapie mit Thiouracil behandelt werden. In dieser Dissertation stelle ich vier Forschungsarbeiten vor, in denen die ultraschnellen, intramolekularen Dynamiken von 2-Thiouracil mittels ultraschneller Anregungs-Abfrage(Pump-Probe)-Röntgenelektronenspektroskopie untersucht werden. Die relevanten molekularen Dynamiken werden stark durch das Schwefelatom des Thiouracils beeinflusst. Die Element- und Ortsempfindlichkeit der verwendeten Röntgenstrahlung erlauben es, diese Prozesse experimentell zu untersuchen. Dafür werden 2-Thiouracil-Moleküle thermisch in einem Molekularstrahl in die Gasphase freigesetzt. Nachdem die Moleküle mit einem UV-Puls angeregt wurden, erfolgt zeitversetzt die Abfrage mit einem Röntgenpuls, der die Moleküle ionisiert. Die kinetische Energie der emittierten Photo- und Augerelektronen wird mit einem Elektronenspektrometer vom Typ ‘Magnetische Flasche’ gemessen. Die Energiespektren dieser Elektronen werden verwendet, um ein Modell von den UV-lichtinduzierten Veränderungen der geometrischen und elektronischen Konfigurationen der Moleküle zu erhalten. Für diese Experimente wird erstmalig eine speziell angefertigte Apparatur namens URSA-PQ verwendet und beschrieben. Sie wurde an der Beamline FL24 des Freie Elektronenlaser (FEL) FLASH2 in Betrieb genommen und verwendet. Aus den Daten werden reine Röntgenphoto- und Augerelektronenspektren des Schwefelatoms von 2-Thiouracil extrahiert und als Referenz verwendet. Die 2p- Photoelektronen werden identifiziert, ebenso wie resonante und nicht-resonante Augerelektronen, die bei dem Zerfall des 2p-Kernlochs entstehen. Die UV-induzierten Veränderungen der 2p-Photolinie ermöglichen es, die Dynamik des elektronischen Zustands zu untersuchen. Unter Verwendung eines ESCS-Modells (Excited-State Chemical Shift) beobachten wir eine ultraschnelle Grundzustandsrelaxation innerhalb von 250 f s. Auger-Elektronen aus dem Zerfall des 2p-Kernlochs im UV-angeregten 2-Thiouracil werden ebenfalls analysiert. Die Änderung ihrer kinetischen Energie deutet auf eine ultraschnelle C − S-Bindungsexpansion auf einer Skala von unter 100 f s hin. Ein einfaches Coulomb-Modell, gekoppelt mit quantenchemischen Berechnungen, kann die geometrischen Veränderungen in der Molekülstruktur erklären. KW - Quantum KW - x-ray KW - photoelectron spectroscopy KW - thiouracil KW - nucleobases KW - Free Electron Laser KW - ultrafast KW - conical intersection KW - molecular dynamics KW - Freie-Elektronen-Laser KW - Quantum KW - konische Kreuzung KW - Molekulardynamik KW - Nukleobasen KW - Photoelektronenspektroskopie KW - Thiouracil KW - ultraschnell KW - Röntgenspektroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-555230 ER - TY - JOUR A1 - Georgiev, Vasil N. A1 - Grafmüller, Andrea A1 - Bléger, David A1 - Hecht, Stefan A1 - Kunstmann, Sonja A1 - Barbirz, Stefanie A1 - Lipowsky, Reinhard A1 - Dimova, Rumiana T1 - Area increase and budding in giant vesicles triggered by light BT - behind the scene JF - Advanced science N2 - Biomembranes are constantly remodeled and in cells, these processes are controlled and modulated by an assortment of membrane proteins. Here, it is shown that such remodeling can also be induced by photoresponsive molecules. The morphological control of giant vesicles in the presence of a water-soluble ortho-tetrafluoroazobenzene photoswitch (F-azo) is demonstrated and it is shown that the shape transformations are based on an increase in membrane area and generation of spontaneous curvature. The vesicles exhibit budding and the buds can be retracted by using light of a different wavelength. In the presence of F-azo, the membrane area can increase by more than 5% as assessed from vesicle electrodeformation. To elucidate the underlying molecular mechanism and the partitioning of F-azo in the membrane, molecular dynamics simulations are employed. Comparison with theoretically calculated shapes reveals that the budded shapes are governed by curvature elasticity, that the spontaneous curvature can be decomposed into a local and a nonlocal contribution, and that the local spontaneous curvature is about 1/(2.5 mu m). The results show that exo- and endocytotic events can be controlled by light and that these photoinduced processes provide an attractive method to change membrane area and morphology. KW - azobenzene KW - lipid membranes KW - molecular dynamics KW - photoswitch KW - vesicles Y1 - 2018 U6 - https://doi.org/10.1002/advs.201800432 SN - 2198-3844 VL - 5 IS - 8 PB - Wiley CY - Hoboken ER - TY - THES A1 - Banerjee, Pallavi T1 - Glycosylphosphatidylinositols (GPIs) and GPI-anchored proteins tethered to lipid bilayers BT - modelling a complex interplay of carbohydrates, proteins and lipids BT - Modellierung eines komplexen Zusammenspiels von Kohlenhydraten, Proteinen und Lipiden N2 - Glycosylphosphatidylinositols (GPIs) are highly complex glycolipids that serve as membrane anchors to a large variety of eukaryotic proteins. These are covalently attached to a group of peripheral proteins called GPI-anchored proteins (GPI-APs) through a post-translational modification in the endoplasmic reticulum. The GPI anchor is a unique structure composed of a glycan, with phospholipid tail at one end and a phosphoethanolamine linker at the other where the protein attaches. The glycan part of the GPI comprises a conserved pseudopentasaccharide core that could branch out to carry additional glycosyl or phosphoethanolamine units. GPI-APs are involved in a diverse range of cellular processes, few of which are signal transduction, protein trafficking, pathogenesis by protozoan parasites like the malaria- causing parasite Plasmodium falciparum. GPIs can also exist freely on the membrane surface without an attached protein such as those found in parasites like Toxoplasma gondii, the causative agent of Toxoplasmosis. These molecules are both structurally and functionally diverse, however, their structure-function relationship is still poorly understood. This is mainly because no clear picture exists regarding how the protein and the glycan arrange with respect to the lipid layer. Direct experimental evidence is rather scarce, due to which inconclusive pictures have emerged, especially regarding the orientation of GPIs and GPI-APs on membrane surfaces and the role of GPIs in membrane organization. It appears that computational modelling through molecular dynamics simulations would be a useful method to make progress. In this thesis, we attempt to explore characteristics of GPI anchors and GPI-APs embedded in lipid bilayers by constructing molecular models at two different resolutions – all-atom and coarse-grained. First, we show how to construct a modular molecular model of GPIs and GPI-anchored proteins that can be readily extended to a broad variety of systems, addressing the micro-heterogeneity of GPIs. We do so by creating a hybrid link to which GPIs of diverse branching and lipid tails of varying saturation with their optimized force fields, GLYCAM06 and Lipid14 respectively, can be attached. Using microsecond simulations, we demonstrate that GPI prefers to “flop-down” on the membrane, thereby, strongly interacting with the lipid heads, over standing upright like a “lollipop”. Secondly, we extend the model of the GPI core to carry out a systematic study of the structural aspects of GPIs carrying different side chains (parasitic and human GPI variants) inserted in lipid bilayers. Our results demonstrate the importance of the side branch residues as these are the most accessible, and thereby, recognizable epitopes. This finding qualitatively agrees with experimental observations that highlight the role of the side branches in immunogenicity of GPIs and the specificity thereof. The overall flop-down orientation of the GPIs with respect to the bilayer surface presents the side chain residues to face the solvent. Upon attaching the green fluorescent protein (GFP) to the GPI, it is seen to lie in close proximity to the bilayer, interacting both with the lipid heads and glycan part of the GPI. However the orientation of GFP is sensitive to the type of GPI it is attached to. Finally, we construct a coarse-grained model of the GPI and GPI-anchored GFP using a modified version of the MARTINI force-field, using which the timescale is enhanced by at least an order of magnitude compared to the atomistic system. This study provides a theoretical perspective on the conformational behavior of the GPI core and some of its branched variations in presence of lipid bilayers, as well as draws comparisons with experimental observations. Our modular atomistic model of GPI can be further employed to study GPIs of variable branching, and thereby, aid in designing future experiments especially in the area of vaccines and drug therapies. Our coarse-grained model can be used to study dynamic aspects of GPIs and GPI-APs w.r.t plasma membrane organization. Furthermore, the backmapping technique of converting coarse-grained trajectory back to the atomistic model would enable in-depth structural analysis with ample conformational sampling. N2 - Glykosylphosphatidyl-Inositole (GPIs) sind komplex Glykolipide, die insbesondere auf der Oberfläche eukaryotischer Zellen als Verankerung einer Reihe unterschiedlicher Proteine dienen. GPIs werden den Proteinen als post-translationale Modifikationen im endoplasmotischen Reticulum hinzugefügt. Die Verankerung in der Membran wird durch einen Phospholipidrest hergestellt, das Protein ist dann über ein sich daran anschließendes Pseudo-Pentasaccharid und einen Phospoethanolaminrest kovalent an den GPI Anker gebunden. Das Pseudo-Pentasaccharid ist dabei proteinunabhängig eine invariante Struktur, kann aber an bestimmten Stellen durch weitere Carbohydratseitenketten und/oder Phosphoethanolaminreste wesentlich erweitert werden. GPI-verankerte Proteine (engl. GPI-anchored proteins, GPI-APs) sind an einer Reihe zellulärer Prozesse beteiligt; einige davon betreffen intra- und interzelluläre Signalübermittlung oder Proteintransport auf der Zelloberfläche; die Pathogenese vieler Parasiten, wie etwa Plasmodium falciparum (Malaria) wird entscheidend durch GPI-APs bestimmt; es können aber auch die bei vielen parasitischen Einzellern freien, ohne Protein auftretenden GPIs pathogene Wirkung entfalten wie etwa bei der Toxoplasmose (Toxoplasma gondii). Der allgemeine Zusammenhang von Struktur eines GPI-AP und seiner Funktion ist allerdings bis heute zum größten Teil unbekannt. Dies liegt zum einen daran, dass sich kein klares Bild zeichnen lässt, wie ein GPI-AP relativ zur Zellmembran exponiert wird. Die relevanten Zeit- und Längenskalen sind experimentell unzugänglich, und entsprechende in vivo oder in vitro Untersuchungen liefern lediglich indirekte Hinweise. Der Fall GPI-verankerter Proteine ist daher ein Beispiel, in dem computergestützte Modellierung einen wesentlichen Beitrag zur Aufklärung leisten kann. In der vorliegenden Arbeit wird zunächst ein atomistisches, molekulardynamisches Modell für GPIs und GPI-APs konstruiert und vorgestellt, mit dem sich GPI-APs auf der Längenskala einiger 10 Nanometer und einer Zeitskala von etwa 10 Mikrosekunden effizient untersuchen lassen. Modularität des Modells ist hierbei ein entscheidender Aspekt: mit den entwickelten Modellen lassen sich eine breite Palette von GPI Variationen darstellen. GPIs weisen, wie auch andere Proteinglykolysierungen eine sogenannte Mikroheterogenität auf; die Modifikation durch den Zucker kann sich zwischen den Kopien ein und desselben Proteins unterscheiden. Die technische Umsetzung erfolgt im Rahmen der sogenannten AMBER- Familie atomistischer Kraftfelder, die nach einem bestimmten Schema für biomolekulare Simulationen entwickelt wurden. Dabei werden existierende Modelle für Zucker (GLYCAM06) und Lipide (Lipid14) durch die Optimierung und Herleitung fehlender Parameter so angepasst, dass sich ein vollständiges GPI-AP in einer Lipid-Doppelschicht darstellen lässt. Dabei zeigt sich, dass das Protein vermittelt über den flexiblen Anker über einen beachtlichen Bewegungsspielraum verfügt. Im Falle des hier betrachteten Green Fluorescent Protein (GFP) kann man daher das Bild einer festen Orientierung des Proteins in Bezug auf die Lipidoberfläche verwerfen; wie in der Mehrzahl der Simulationen beobachtet, kann das GFP sogar vollständig auf der Lipidschicht zu liegen kommen. Weiterhin konnte nachgewiesen werden, dass eine Reihe möglicher Seitenketten des GPI Ankers, die zu Parasiten wie Toxoplasma gondii gehören und bei entsprechenden Immunreaktionen relevant sind, tatsächlich so exponiert werden, dass ihre Rolle als Rezeptoren unterstrichen wird. Das Pseudopentasaccharid selbst ist dabei teilweise in die Kopfgruppenregion der Lipidschicht eingebettet. Des Weiteren wurde hier das atomistische Modell auf eine vergröberte Darstellung im Rahmen des MARTINI Kraftfelds projiziert, um die zugänglichen Zeit- und Längenskalen noch einmal um einen Faktor 10 zu erweitern. Somit werden auch Studien GPI-APs möglich, bei denen sich ihre Dynamik in heterogenen Lipidschichten untersuchen lässt, etwa um Fragen zu beantworten, wie diese Proteine mit verschiedenen Membrandomänen assoziieren. Insgesamt werden mit dieser Arbeit eine Reihe von Ansätzen aufgezeigt, wie sich GPI verankerte Proteine möglicherweise effektiver in speziell angepassten Experimenten und in größerem Detail untersuchen lassen, als dies bisher möglich war. T2 - Glykosylphosphatidylinositole (GPIs) und GPI-verankerte Proteine, die an Lipid-Doppelschichten gebunden sind KW - GPI KW - carbohydrates KW - membrane KW - protein KW - molecular dynamics KW - coarse-graining KW - martini KW - GPI KW - Kohlenhydrate KW - grobkörnig KW - martini KW - Membran KW - Molekular-dynamik KW - Protein Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-489561 ER - TY - GEN A1 - Metje, Jan A1 - Lever, Fabiano A1 - Mayer, Dennis A1 - Squibb, Richard James A1 - Robinson, Matthew Scott A1 - Niebuhr, Mario A1 - Feifel, Raimund A1 - Düsterer, Stefan A1 - Gühr, Markus T1 - URSA-PQ BT - A Mobile and Flexible Pump-Probe Instrument for Gas Phase Samples at the FLASH Free Electron Laser T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We present a highly flexible and portable instrument to perform pump-probe spectroscopy with an optical and an X-ray pulse in the gas phase. The so-called URSA-PQ (German for ‘Ultraschnelle Röntgenspektroskopie zur Abfrage der Photoenergiekonversion an Quantensystemen’, Engl. ‘ultrafast X-ray spectroscopy for probing photoenergy conversion in quantum systems’) instrument is equipped with a magnetic bottle electron spectrometer (MBES) and tools to characterize the spatial and temporal overlap of optical and X-ray laser pulses. Its adherence to the CAMP instrument dimensions allows for a wide range of sample sources as well as other spectrometers to be included in the setup. We present the main design and technical features of the instrument. The MBES performance was evaluated using Kr M4,5NN Auger lines using backfilled Kr gas, with an energy resolution ΔE/E ≅ 1/40 in the integrating operative mode. The time resolution of the setup at FLASH 2 FL 24 has been characterized with the help of an experiment on 2-thiouracil that is inserted via the instruments’ capillary oven. We find a time resolution of 190 fs using the molecular 2p photoline shift and attribute this to different origins in the UV-pump—the X-ray probe setup. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1016 KW - X-ray probe KW - molecular dynamics KW - gas phase electron spectroscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483073 SN - 1866-8372 IS - 1016 ER - TY - JOUR A1 - Metje, Jan A1 - Lever, Fabiano A1 - Mayer, Dennis A1 - Squibb, Richard James A1 - Robinson, Matthew Scott A1 - Niebuhr, Mario A1 - Feifel, Raimund A1 - Düsterer, Stefan A1 - Gühr, Markus T1 - URSA-PQ BT - A Mobile and Flexible Pump-Probe Instrument for Gas Phase Samples at the FLASH Free Electron Laser JF - Applied Sciences N2 - We present a highly flexible and portable instrument to perform pump-probe spectroscopy with an optical and an X-ray pulse in the gas phase. The so-called URSA-PQ (German for ‘Ultraschnelle Röntgenspektroskopie zur Abfrage der Photoenergiekonversion an Quantensystemen’, Engl. ‘ultrafast X-ray spectroscopy for probing photoenergy conversion in quantum systems’) instrument is equipped with a magnetic bottle electron spectrometer (MBES) and tools to characterize the spatial and temporal overlap of optical and X-ray laser pulses. Its adherence to the CAMP instrument dimensions allows for a wide range of sample sources as well as other spectrometers to be included in the setup. We present the main design and technical features of the instrument. The MBES performance was evaluated using Kr M4,5NN Auger lines using backfilled Kr gas, with an energy resolution ΔE/E ≅ 1/40 in the integrating operative mode. The time resolution of the setup at FLASH 2 FL 24 has been characterized with the help of an experiment on 2-thiouracil that is inserted via the instruments’ capillary oven. We find a time resolution of 190 fs using the molecular 2p photoline shift and attribute this to different origins in the UV-pump—the X-ray probe setup. KW - X-ray probe KW - molecular dynamics KW - gas phase electron spectroscopy Y1 - 2020 U6 - https://doi.org/10.3390/app10217882 SN - 2076-3417 VL - 10 IS - 21 PB - MDPI CY - Basel ER - TY - THES A1 - Melani, Giacomo T1 - From structural fluctuations to vibrational spectroscopy of adsorbates on surfaces T1 - Von Strukturfluktuationen bis zur Schwingungsspektroskopie von Adsorbaten auf Oberflächen BT - a theoretical study of H2O on α-Al2O3(0001) BT - eine theoretische Untersuchung von H2O auf α-Al2O3 (0001) N2 - Aluminum oxide is an Earth-abundant geological material, and its interaction with water is of crucial importance for geochemical and environmental processes. Some aluminum oxide surfaces are also known to be useful in heterogeneous catalysis, while the surface chemistry of aqueous oxide interfaces determines the corrosion, growth and dissolution of such materials. In this doctoral work, we looked mainly at the (0001) surface of α-Al 2 O 3 and its reactivity towards water. In particular, a great focus of this work is dedicated to simulate and address the vibrational spectra of water adsorbed on the α-alumina(0001) surface in various conditions and at different coverages. In fact, the main source of comparison and inspiration for this work comes from the collaboration with the “Interfacial Molecular Spectroscopy” group led by Dr. R. Kramer Campen at the Fritz-Haber Institute of the MPG in Berlin. The expertise of our project partners in surface-sensitive Vibrational Sum Frequency (VSF) generation spectroscopy was crucial to develop and adapt specific simulation schemes used in this work. Methodologically, the main approach employed in this thesis is Ab Initio Molecular Dynamics (AIMD) based on periodic Density Functional Theory (DFT) using the PBE functional with D2 dispersion correction. The analysis of vibrational frequencies from both a static and a dynamic, finite-temperature perspective offers the ability to investigate the water / aluminum oxide interface in close connection to experiment. The first project presented in this work considers the characterization of dissociatively adsorbed deuterated water on the Al-terminated (0001) surface. This particular structure is known from both experiment and theory to be the thermodynamically most stable surface termination of α-alumina in Ultra-High Vacuum (UHV) conditions. Based on experiments performed by our colleagues at FHI, different adsorption sites and products have been proposed and identified for D 2 O. While previous theoretical investigations only looked at vibrational frequencies of dissociated OD groups by staticNormal Modes Analysis (NMA), we rather employed a more sophisticated approach to directly assess vibrational spectra (like IR and VSF) at finite temperature from AIMD. In this work, we have employed a recent implementation which makes use of velocity-velocity autocorrelation functions to simulate such spectral responses of O-H(D) bonds. This approach allows for an efficient and qualitatively accurate estimation of Vibrational Densities of States (VDOS) as well as IR and VSF spectra, which are then tested against experimental spectra from our collaborators. In order to extend previous work on unimolecularly dissociated water on α-Al 2 O 3 , we then considered a different system, namely, a fully hydroxylated (0001) surface, which results from the reconstruction of the UHV-stable Al-terminated surface at high water contents. This model is then further extended by considering a hydroxylated surface with additional water molecules, forming a two-dimensional layer which serves as a potential template to simulate an aqueous interface in environmental conditions. Again, employing finite-temperature AIMD trajectories at the PBE+D2 level, we investigated the behaviour of both hydroxylated surface (HS) and the water-covered structure derived from it (known as HS+2ML). A full range of spectra, from VDOS to IR and VSF, is then calculated using the same methodology, as described above. This is the main focus of the second project, reported in Chapter 5. In this case, comparison between theoretical spectra and experimental data is definitely good. In particular, we underline the nature of high-frequency resonances observed above 3700 cm −1 in VSF experiments to be associated with surface OH-groups, known as “aluminols” which are a key fingerprint of the fully hydroxylated surface. In the third and last project, which is presented in Chapter 6, the extension of VSF spectroscopy experiments to the time-resolved regime offered us the opportunity to investigate vibrational energy relaxation at the α-alumina / water interface. Specifically, using again DFT-based AIMD simulations, we simulated vibrational lifetimes for surface aluminols as experimentally detected via pump-probe VSF. We considered the water-covered HS model as a potential candidate to address this problem. The vibrational (IR) excitation and subsequent relaxation is performed by means of a non-equilibrium molecular dynamics scheme. In such a scheme, we specifically looked at the O-H stretching mode of surface aluminols. Afterwards, the analysis of non-equilibrium trajectories allows for an estimation of relaxation times in the order of 2-4 ps which are in overall agreement with measured ones. The aim of this work has been to provide, within a consistent theoretical framework, a better understanding of vibrational spectroscopy and dynamics for water on the α-alumina(0001) surface,ranging from very low water coverage (similar to the UHV case) up to medium-high coverages, resembling the hydroxylated oxide in environmental moist conditions. N2 - Das Hauptziel dieser Doktorarbeit war die Untersuchung der Wechselwirkung zwischen Aluminiumoxid (α-Al2O3) und Wasser, wobei die (0001)-Oberfläche von α-Al2O3 im Fokus der Betrachtungen stand. Infolge der Entwicklung moderner oberflächensensitiver spektroskopischer Methoden, insbesondere in der Schwingungsspektroskopie, ist es inzwischen experimentell möglich, die Oberflächenchemie dieser Oxidmaterialien zu untersuchen und atomistische Informationen über ihre wässrigen Grenzflächen zu erhalten. Unsere Gruppe hat mit der Interfacial Molecular Spectroscopy Gruppe des Fritz-Haber-Instituts der MPG in Berlin zusammengearbeitet, deren Expertise in der oberflächensensitiven Vibrational Sum Frequency (VSF) Generation liegt. Diese Technik gestattet den spezifischen Nachweis von Adsorbatvibrationen, beispielsweise des Produkts der Wasserdissoziation und -adsorption. Zur theoretischen Untersuchung dieses Systems wurden verschiedene Berechnungsmethoden genutzt, wobei bevorzugt die Ab-initio-Molekulardynamik (AIMD) zum Einsatz kam. Darüber hinaus konzentrierten wir uns auf die Simulation von Schwingungsfrequenzen und -spektren für verschiedene Systeme unter Verwendung eines neuen, effizienten Algorithmus, der auf Grundlage klassischer Zeitkorrelationsfunktionen entwickelt wurde. Das erste Projekt untersuchte die einfachsten Adsorptionsprodukte von Wasserreaktionen auf der Al-terminierten α-Al2O3(0001)-Oberfläche, die unter Ultrahochvakuumbedingungen (UHV) als stabilste Struktur bekannt ist. Mit AIMD-basierten Methoden haben wir verschiedene Spezies simuliert, die aus unimolekular adsorbiertem Wasser stammen, und ihre Schwingungsfrequenzen im Vergleich zum Experiment bestimmt. In einem zweiten Projekt widmeten wir uns einer Situation, in der eine vollständig hydroxylierte α-Aluminiumoxid-Oberfläche mit einer ebenfalls vollständig hydroxylierten, aber um eine zusätzliche Wasserschicht erweiterten α-Aluminiumoxid-Oberfläche wechselwirkt. Diese beiden Strukturen dienen als Grundlage zur weitergehenden Untersuchung von Aluminiumoxid-Oberflächen mit größeren Wasser-Bedeckungsgraden unter Umgebungsbedingungen. Wiederum simulierten wir vollständige Schwingunsspektren (einschließlich IR und VSF). Hierzu wurden etablierte Methoden genutzt, die auf der Verwendung von Zeitkorrelationsfunktionen basieren, jedoch von uns im Rahmen dieser Doktorarbeit weiterentwickelt wurden. Schließlich haben wir in einem dritten Projekt in Zusammenarbeit mit Experimentatoren die Schwingungsrelaxation an der Wasser / α-Al2O3-Grenzfläche beschrieben. Motiviert durch Pump-Probe-VSF-Experimente zur Bestimmung der Schwingungslebensdauer adsorbierter OH-Spezies entwickelten und verwendeten wir einen AIMD-Ansatz zur Simulation der Anregungs- und Relaxationsprozesse. Auf Grundlage von Nichtgleichgewichtstrajektorien konnten wir auch eine Relaxationszeitskala für OH-Gruppen ermitteln, die zwischen 2 und 4 Pikosekunden beträgt und gut mit experimentellen Werten übereinstimmt. KW - theoretical chemistry KW - molecular dynamics KW - DFT KW - vibrational spectroscopy KW - theoretische Chemie KW - Molekulardynamik KW - DFT KW - Schwingungsspektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441826 ER - TY - JOUR A1 - Rakers, Christin A1 - Schumacher, Fabian A1 - Meinl, Walter A1 - Glatt, Hansruedi A1 - Kleuser, Burkhard A1 - Wolber, Gerhard T1 - In Silico Prediction of Human Sulfotransferase 1E1 Activity Guided by Pharmacophores from Molecular Dynamics Simulations JF - The journal of biological chemistry N2 - Acting during phase II metabolism, sulfotransferases (SULTs) serve detoxification by transforming a broad spectrum of compounds from pharmaceutical, nutritional, or environmental sources into more easily excretable metabolites. However, SULT activity has also been shown to promote formation of reactive metabolites that may have genotoxic effects. SULT subtype 1E1 (SULT1E1) was identified as a key player in estrogen homeostasis, which is involved in many physiological processes and the pathogenesis of breast and endometrial cancer. The development of an in silico prediction model for SULT1E1 ligands would therefore support the development of metabolically inert drugs and help to assess health risks related to hormonal imbalances. Here, we report on a novel approach to develop a model that enables prediction of substrates and inhibitors of SULT1E1. Molecular dynamics simulations were performed to investigate enzyme flexibility and sample protein conformations. Pharmacophores were developed that served as a cornerstone of the model, and machine learning techniques were applied for prediction refinement. The prediction model was used to screen the DrugBank (a database of experimental and approved drugs): 28% of the predicted hits were reported in literature as ligands of SULT1E1. From the remaining hits, a selection of nine molecules was subjected to biochemical assay validation and experimental results were in accordance with the in silico prediction of SULT1E1 inhibitors and substrates, thus affirming our prediction hypotheses. KW - drug design KW - drug metabolism KW - liver metabolism KW - molecular dynamics KW - molecular modeling KW - sulfotransferase Y1 - 2016 U6 - https://doi.org/10.1074/jbc.M115.685610 SN - 0021-9258 SN - 1083-351X VL - 291 SP - 58 EP - 71 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - GEN A1 - Georgiev, Vasil N. A1 - Grafmüller, Andrea A1 - Bléger, David A1 - Hecht, Stefan A1 - Kunstmann, Ruth Sonja A1 - Barbirz, Stefanie A1 - Lipowsky, Reinhard A1 - Dimova, Rumiana T1 - Area increase and budding in giant vesicles triggered by light BT - behind the scene T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Biomembranes are constantly remodeled and in cells, these processes are controlled and modulated by an assortment of membrane proteins. Here, it is shown that such remodeling can also be induced by photoresponsive molecules. The morphological control of giant vesicles in the presence of a water-soluble ortho-tetrafluoroazobenzene photoswitch (F-azo) is demonstrated and it is shown that the shape transformations are based on an increase in membrane area and generation of spontaneous curvature. The vesicles exhibit budding and the buds can be retracted by using light of a different wavelength. In the presence of F-azo, the membrane area can increase by more than 5% as assessed from vesicle electrodeformation. To elucidate the underlying molecular mechanism and the partitioning of F-azo in the membrane, molecular dynamics simulations are employed. Comparison with theoretically calculated shapes reveals that the budded shapes are governed by curvature elasticity, that the spontaneous curvature can be decomposed into a local and a nonlocal contribution, and that the local spontaneous curvature is about 1/(2.5 mu m). The results show that exo- and endocytotic events can be controlled by light and that these photoinduced processes provide an attractive method to change membrane area and morphology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 733 KW - azobenzene KW - lipid membranes KW - molecular dynamics KW - photoswitch KW - vesicles Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426298 SN - 1866-8372 VL - 5 IS - 733 ER - TY - THES A1 - Kav, Batuhan T1 - Membrane adhesion mediated via lipid-anchored saccharides T1 - Membranadhäsion durch Lipid-verankerte Saccharide N2 - Membrane adhesion is a fundamental biological process in which membranes are attached to neighboring membranes or surfaces. Membrane adhesion emerges from a complex interplay between the binding of membrane-anchored receptors/ligands and the membrane properties. In this work, we study membrane adhesion mediated by lipid-anchored saccharides using microsecond-long full-atomistic molecular dynamics simulations. Motivated by neutron scattering experiments on membrane adhesion via lipid-anchored saccharides, we investigate the role of LeX, Lac1, and Lac2 saccharides and membrane fluctuations in membrane adhesion. We study the binding of saccharides in three different systems: for saccharides in water, for saccharides anchored to essentially planar membranes at fixed separations, and for saccharides anchored to apposing fluctuating membranes. Our simulations of two saccharides in water indicate that the saccharides engage in weak interactions to form dimers. We find that the binding occurs in a continuum of bound states instead of a certain number of well-defined bound structures, which we term as "diffuse binding". The binding of saccharides anchored to essentially planar membranes strongly depends on separation of the membranes, which is fixed in our simulation system. We show that the binding constants for trans-interactions of two lipid-anchored saccharides monotonically decrease with increasing separation. Saccharides anchored to the same membrane leaflet engage in cis-interactions with binding constants comparable to the trans-binding constants at the smallest membrane separations. The interplay of cis- and trans-binding can be investigated in simulation systems with many lipid-anchored saccharides. For Lac2, our simulation results indicate a positive cooperativity of trans- and cis-binding. In this cooperative binding the trans-binding constant is enhanced by the cis-interactions. For LeX, in contrast, we observe no cooperativity between trans- and cis-binding. In addition, we determine the forces generated by trans-binding of lipid-anchored saccharides in planar membranes from the binding-induced deviations of the lipid-anchors. We find that the forces acting on trans-bound saccharides increase with increasing membrane separation to values of the order of 10 pN. The binding of saccharides anchored to the fluctuating membranes results from an interplay between the binding properties of the lipid-anchored saccharides and membrane fluctuations. Our simulations, which have the same average separation of the membranes as obtained from the neutron scattering experiments, yield a binding constant larger than in planar membranes with the same separation. This result demonstrates that membrane fluctuations play an important role at average membrane separations which are seemingly too large for effective binding. We further show that the probability distribution of the local separation can be well approximated by a Gaussian distribution. We calculate the relative membrane roughness and show that our results are in good agreement with the roughness values reported from the neutron scattering experiments. N2 - Membranadhäsion ist ein fundamentaler biologischer Prozess, bei dem Membranen sich an benachbarte Membranen oder Oberfläche anheften. Membranadhäsion entstammt einem komplexen Zusammenspiel aus Bindungen zwischen Membranverankerten Rezeptor/Ligand-Bindungen und den Membraneigenschaften selbst. In dieser Arbeit untersuchen wir Membranadhäsion vermittelt durch Lipid-verankerte Saccharide mittels Mikrosekunden-langer voll-atomistischer molekular-dynamischer Simulationen. Motiviert durch Neutronen Scattering Experimente von Lipid-verankerten Sacchariden und deren Einfluss auf Membranadhäsion, untersuchen wir die Rolle der Saccharide LeX, Lac1 und Lac2 sowie der Membranfluktuationen in Membranadhäsion. Wir untersuchen die Bindungen der Saccharide in drei verschiedenen Systemen: In Wasser, verankert in quasi-ebenflächigen Membranen bei fixierten Abständen, und verankert in aneinanderliegenden, fluktuierenden Membranen. Unsere Simulationen von zwei Sacchariden in Wasser deuten darauf hin, dass diese Saccharide durch schwache Interaktionen Dimere formen. Anstelle einiger klar definierter Bindungsstrukturen, finden wir ein Kontinuum von gebundenen Zuständen vor, das wir als "diffuse Bindung" bezeichnen. Die Bindungen von Sacchariden in quasi-ebenflächigen Membranen hängt stark vom Abstand zwischen diesen Membranen ab, der in unserem System fest gewählt ist. Wir zeigen, dass die Bundungskonstanten für trans-Interaktionen zweier Lipid-verankerter Saccharide monoton abnimmt mit zunehmendem Abstand. Saccharide verankert auf der selben Membran wechselwirken in cis-Interaktionen, deren Bindungskonstanten denen der trans-Interaktionen bei dem kleinsten gewählten Membranabstand ähneln. Das Zusammenspiel der cis- und trans-Interaktionen kann in Simulationssystemen mit vielen Lipid-verankerten Sacchariden untersucht werden. Für Lac2 deuten unsere Simulationen auf eine Kooperativität zwischen cis- und trans-Interaktionen hin: In diesem kooperativen Bindungsprozess verstärkt die cis-Interkation die trans-Bindunskonstante. Für LeX hingegen stellen wir keine Kooperativität zwischen trans- und cis-Bindung fest. Zusätzlich bestimmen wir die generierten Kräfte, die durch trans-gebundene Lipid-verankerte Saccharide in ebenflächigen Membranen und die resultierende Ablenkung der Lipid-Anker hervorgerufen werden. Wir stellen fest, dass mit gesteigertem Abstand zwischen den Membranen, die auf trans-gebundene Saccharide wirkenden Kräfte auf bis zu 10 pN ansteigen. Die Bindungen von Sacchariden, die in fluktuierenden Membranen verankert sind, resultieren aus einem Zusammenspiel zwischen den Eigenschaften dieser Lipid-verankerten Saccharide und den Membranfluktuationen. Unsere Simulationen, die den Membranabstand aufweisen, der auch in den Neutron Scattering Experimenten ermittelt wurde, resultieren in einer Bindungskonstante, die größer ist als jene in quasi-ebenflächigen Membranen bei dem gleichen Abstand. Dieses Ergebnis demonstriert, dass Membranfluktuationen eine wichtige Rolle spielen bei mittleren Membranabstünden, die sonst scheinbar zu groß sind für effektive Bindungsprozesse. Weiterhin zeigen wir, dass die Wahrscheinlichkeitsverteilung der lokalen Abstünde gut durch eine Gauss-Verteilung approximiert werden kann. Wir berechnen die relative Membranrauigkeit und zeigen, dass unsere Ergebnisse gut mit denen der Neutron Scattering Experimente vereinbar sind. KW - molecular dynamics KW - membrane adhesion KW - lipid-anchored saccharide KW - lipid membranes KW - membrane adhesion forces KW - Molekulardynamik KW - Membranadhäsion KW - lipid-verankerte Saccharide KW - Lipidmembran KW - Membran-Adhäsionskräfte Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428790 ER - TY - JOUR A1 - Goetze, Jan P. A1 - Greco, Claudio A1 - Mitric, Roland A1 - Bonacic-Koutecky, Vlasta A1 - Saalfrank, Peter T1 - BLUF Hydrogen network dynamics and UV/Vis spectra: A combined molecular dynamics and quantum chemical study JF - JOURNAL OF COMPUTATIONAL CHEMISTRY N2 - Blue light sensing using flavin (BLUF) protein photoreceptor domains change their hydrogen bond network after photoexcitation. To explore this phenomenon, BLUF domains from R. sphaeroides were simulated using Amber99 molecular dynamics (MD). Five starting configurations were considered, to study different BLUF proteins (AppA/BlrB), Trp conformations (Win/Wout), structure determination (X-ray/NMR), and finally, His protonation states. We found dependencies of the hydrogen bonds on almost all parameters. Our data show an especially strong correlation of the Trp position and hydrogen bonds involving Gln63. The latter is in some contradiction to earlier results (Obanayama et al., Photochem. Photobiol. 2008, 84 10031010). Possible origins and implications are discussed. Our calculations support conjectures that Gln63 is more flexible with Trp104 in Win position. Using snapshots from MD and time-dependent density functional theory, UV/vis spectra for the chromophore were determined, which account for molecular motion of the protein under ambient conditions. In accord with experiment, it is found that the UV/vis spectra of BLUF bound flavin are red-shifted and thermally broadened for all calculated p ? p* transitions, relative to gas phase flavin at T = 0 K. However, differences in the spectra between the various BLUF configurations cannot be resolved with the present approach. (c) 2012 Wiley Periodicals, Inc. KW - blue-light sensor KW - flavin KW - molecular dynamics KW - TD-DFT KW - BLUF domains Y1 - 2012 U6 - https://doi.org/10.1002/jcc.23056 SN - 0192-8651 VL - 33 IS - 28 SP - 2233 EP - 2242 PB - WILEY-BLACKWELL CY - HOBOKEN ER -