TY - JOUR A1 - Tian, Fang A1 - Cao, Xianyong A1 - Dallmeyer, Anne A1 - Lohmann, Gerrit A1 - Zhang, Xu A1 - Ni, Jian A1 - Andreev, Andrei A1 - Anderson, Patricia M. A1 - Lozhkin, Anatoly V. A1 - Bezrukova, Elena A1 - Rudaya, Natalia A1 - Xu, Qinghai A1 - Herzschuh, Ulrike T1 - Biome changes and their inferred climatic drivers in northern and eastern continental Asia at selected times since 40 cal ka BP JF - Vegetation History and Archaeobotany N2 - Recent global warming is pronounced in high-latitude regions (e.g. northern Asia), and will cause the vegetation to change. Future vegetation trends (e.g. the "arctic greening") will feed back into atmospheric circulation and the global climate system. Understanding the nature and causes of past vegetation changes is important for predicting the composition and distribution of future vegetation communities. Fossil pollen records from 468 sites in northern and eastern Asia were biomised at selected times between 40 cal ka bp and today. Biomes were also simulated using a climate-driven biome model and results from the two approaches compared in order to help understand the mechanisms behind the observed vegetation changes. The consistent biome results inferred by both approaches reveal that long-term and broad-scale vegetation patterns reflect global- to hemispheric-scale climate changes. Forest biomes increase around the beginning of the late deglaciation, become more widespread during the early and middle Holocene, and decrease in the late Holocene in fringe areas of the Asian Summer Monsoon. At the southern and southwestern margins of the taiga, forest increases in the early Holocene and shows notable species succession, which may have been caused by winter warming at ca. 7 cal ka bp. At the northeastern taiga margin (central Yakutia and northeastern Siberia), shrub expansion during the last deglaciation appears to prevent the permafrost from thawing and hinders the northward expansion of evergreen needle-leaved species until ca. 7 cal ka bp. The vegetation-climate disequilibrium during the early Holocene in the taiga-tundra transition zone suggests that projected climate warming will not cause a northward expansion of evergreen needle-leaved species. KW - Siberia KW - China KW - Northern Asia KW - Model-data comparison KW - Pollen KW - Permafrost KW - Vegetation-climate disequilibrium Y1 - 2018 U6 - https://doi.org/10.1007/s00334-017-0653-8 SN - 0939-6314 SN - 1617-6278 VL - 27 IS - 2 SP - 365 EP - 379 PB - Springer CY - New York ER - TY - JOUR A1 - Li, Huashu A1 - Liu, Xingqi A1 - Herzschuh, Ulrike A1 - Cao, Xianyong A1 - Yu, Zhitong A1 - Wang, Yong T1 - Vegetation and climate changes since the middle MIS 3 inferred from a Wulagai Lake pollen record, Inner Mongolia, Northeastern China JF - Review of palaeobotany and palynology : an international journal N2 - The climate conditions during Marine Isotope Stage (MIS) 3 were similar to present-day conditions, but whether humidity then exceeded present levels is debated, and the driving mechanisms of palaeoclimate evolution since MIS 3 remain unclear. Here, we use pollen data from Wulagai Lake, Inner Mongolia, to reconstruct vegetation and climate changes since the middle MIS 3. The steppe biome is reconstructed as the first dominant biome and the desert biome as the second, and the results show that the vegetation was steppe over the last 43,800 years. Poaceae, Artemisia, Caryophyllaceae and Humulus were abundant from middle to late MIS 3, indicating humid climate conditions. As drought-tolerant species such as Hippophae, Nitraria and Chenopodiaceae spread during MIS 2, the climate became arid. The Holocene is characterized by the dominance of steppe with mixed coniferous-broadleaved forests in the Greater Hinggan Range, and the desert biome retains high affinity scores, indicating that the climate was semi-arid. The climate from middle to late MIS 3 was wetter than in the Holocene; this shift was related to changes in the Northern Hemisphere's solar insolation and ice volume. The humid conditions during MIS 3 were attributed to strong ice–albedo feedback, which led to evaporation that was less than the precipitation. The enhanced evaporation caused by increased solar insolation and decreased ice volume might have exceeded the precipitation during the Holocene and resulted in low effective humidity in the Wulagai Lake basin. KW - Pollen KW - Biome KW - Ice volume KW - Solar insolation Y1 - 2018 U6 - https://doi.org/10.1016/j.revpalbo.2018.12.006 SN - 0034-6667 SN - 1879-0615 VL - 262 SP - 44 EP - 51 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Dallmeyer, Anne A1 - Herzschuh, Ulrike T1 - Northern Hemisphere biome changes (> 30 degrees N) since 40 cal ka BP and their driving factors inferred from model-data comparisons JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Ongoing and past biome transitions are generally assigned to climate and atmospheric changes (e.g. temperature, precipitation, CO2), but the major regional factors or factor combinations that drive vegetation change often remain unknown. Modelling studies applying ensemble runs can help to partition the effects of the different drivers. Such studies require careful validation with observational data. In this study, fossil pollen records from 741 sites in Europe, 728 sites in North America, and 418 sites in Asia (extracted from terrestrial archives including lake sediments) are used to reconstruct biomes at selected time slices between 40 cal ka BP (calibrated thousand years before present) and today. These results are used to validate Northern Hemisphere biome distributions (>30 degrees N) simulated by the biome model BIOME4 that has been forced with climate data simulated by a General Circulation model. Quantitative comparisons between pollen- and model-based results show a generally good fit at a broad spatial scale. Mismatches occur in central-arid Asia with a broader extent of grassland throughout the last 40 ka (likely due to the over-representation of Artemisia and Chenopodiaceae pollen) and in Europe with over-estimation of tundra at 0 cal ka BP (likely due to human impacts to some extent). Sensitivity analysis reveals that broad-scale biome changes follow the global signal of major postglacial temperature change, although the climatic variables vary in their regional and temporal importance. Temperature is the dominant variable in Europe and other rather maritime areas for biome changes between 21 and 14 ka, while precipitation is highly important in the arid inland regions of Asia and North America. The ecophysiological effect of changes in the atmospheric CO2-concentration has the highest impact during this transition than in other intervals. With respect to modern vegetation in the course of global warming, our findings imply that vegetation change in the Northern Hemisphere may be strongly limited by effective moisture changes, i.e. the combined effect of temperature and precipitation, particularly in inland areas. (C) 2019 Elsevier Ltd. All rights reserved. KW - Biomisation KW - Climate warming KW - Europe KW - Holocene KW - Model-data comparison KW - Northern Asia KW - North America KW - Pollen KW - Siberia KW - Vegetation driver Y1 - 2019 U6 - https://doi.org/10.1016/j.quascirev.2019.07.034 SN - 0277-3791 VL - 220 SP - 291 EP - 309 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Marquer, Laurent A1 - Gaillard, Marie-Jose A1 - Sugita, Shinya A1 - Poska, Anneli A1 - Trondman, Anna-Kari A1 - Mazier, Florence A1 - Nielsen, Anne Birgitte A1 - Fyfe, Ralph M. A1 - Jonsson, Anna Maria A1 - Smith, Benjamin A1 - Kaplan, Jed O. A1 - Alenius, Teija A1 - Birks, H. John B. A1 - Bjune, Anne E. A1 - Christiansen, Jorg A1 - Dodson, John A1 - Edwards, Kevin J. A1 - Giesecke, Thomas A1 - Herzschuh, Ulrike A1 - Kangur, Mihkel A1 - Koff, Tiiu A1 - Latalowa, Maligorzata A1 - Lechterbeck, Jutta A1 - Olofsson, Jorgen A1 - Seppa, Heikki T1 - Quantifying the effects of land use and climate on Holocene vegetation in Europe JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved. KW - Climate KW - Holocene KW - Human impact KW - Land use KW - LPJ-GUESS KW - Europe KW - Pollen KW - REVEALS KW - Vegetation composition Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.07.001 SN - 0277-3791 VL - 171 SP - 20 EP - 37 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Tian, Fang A1 - Cao, Xianyong A1 - Dallmeyer, Anne A1 - Ni, Jian A1 - Zhao, Yan A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - We present a calibration-set based on modern pollen and satellite-based Advanced Very High Resolution Radiometer (AVHRR) observations of woody cover (including needleleaved, broadleaved and total tree cover) in eastern continental Asia, which shows good performance under cross-validation with the modern analogue technique (all the coefficients of determination between observed and predicted values are greater than 0.65). The calibration-set is used to reconstruct woody cover from a taxonomically harmonized and temporally standardized fossil pollen dataset (including 274 cores) with 500-year resolution over the last 22 kyr. The spatial range of forest has not noticeably changed in eastern continental Asia during the last 22 kyr, although woody cover has, especially at the margin of the eastern Tibetan Plateau and in the forest-steppe transition area of north-central China. Vegetation was sparse during the LGM in the present forested regions, but woody cover increased markedly at the beginning of the Bolling/Allerod period (B/A; ca. 14.5 ka BP) and again at the beginning of the Holocene (ca. 11.5 ka BP), and is related to the enhanced strength of the East Asian Summer Monsoon. Forest flourished in the mid Holocene (ca. 8 ka BP) possibly due to favourable climatic conditions. In contrast, cover was stable in southern China (high cover) and arid central Asia (very low cover) throughout the investigated period. Forest cover increased in the north-eastern part of China during the Holocene. Comparisons of these regional pollen-based results with simulated forest cover from runs of a global climate model (for 9, 6 and 0 ka BP (ECHAM5/JSBACH similar to 1.125 degrees spatial resolution)) reveal many similarities in temporal change. The Holocene woody cover history of eastern continental Asia is different from that of other regions, likely controlled by different climatic variables, i.e. moisture in eastern continental Asia; temperature in northern Eurasia and North America. (C) 2016 Elsevier Ltd. All rights reserved. KW - Pollen KW - AVHRR KW - Modern analogue technique KW - Quantitative reconstruction KW - East Asian summer monsoon Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.02.001 SN - 0277-3791 VL - 137 SP - 33 EP - 44 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Biskaborn, Boris K. A1 - Subetto, D. A. A1 - Savelieva, L. A. A1 - Vakhrameeva, P. S. A1 - Hansche, A. A1 - Herzschuh, Ulrike A1 - Klemm, J. A1 - Heinecke, L. A1 - Pestryakova, Luidmila Agafyevna A1 - Meyer, H. A1 - Kuhn, G. A1 - Diekmann, Bernhard T1 - Late Quaternary vegetation and lake system dynamics in north-eastern Siberia: Implications for seasonal climate variability JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between similar to 13,500 and similar to 8900 cal. years BP and possibly during the 8200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8 degrees C during the Holocene Thermal Maximum (HTM) between similar to 8900 and similar to 4500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice sheet vanished 7000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions. (C) 2015 Elsevier Ltd. All rights reserved. KW - Diatoms KW - Pollen KW - Summer and winter temperature KW - Holocene Thermal Maximum KW - Aquatic and terrestrial ecosystems KW - Lake-ice cover Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2015.08.014 SN - 0277-3791 VL - 147 SP - 406 EP - 421 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wischnewski, Juliane A1 - Herzschuh, Ulrike A1 - Ruehland, Kathleen M. A1 - Braeuning, Achim A1 - Mischke, Steffen A1 - Smol, John P. A1 - Wang, Lily T1 - Recent ecological responses to climate variability and human impacts in the Nianbaoyeze Mountains (eastern Tibetan Plateau) inferred from pollen, diatom and tree-ring data JF - Journal of paleolimnolog N2 - The Tibetan Plateau is a region that is highly sensitive to recent global warming, but the complexity and heterogeneity of its mountainous landscape can result in variable responses. In addition, the scarcity and brevity of regional instrumental and palaeoecological records still hamper our understanding of past and present patterns of environmental change. To investigate how the remote, high-alpine environments of the Nianbaoyeze Mountains, eastern Tibetan Plateau, are affected by climate change and human activity over the last similar to 600 years, we compared regional tree-ring studies with pollen and diatom remains archived in the dated sediments of Dongerwuka Lake (33.22A degrees N, 101.12A degrees E, 4,307 m a.s.l.). In agreement with previous studies from the eastern Tibetan Plateau, a strong coherence between our two juniper-based tree-ring chronologies from the Nianbaoyeze and the Anemaqin Mountains was observed, with pronounced cyclical variations in summer temperature reconstructions. A positive directional trend to warmer summer temperatures in the most recent decades, was, however, not observed in the tree-ring record. Likewise, our pollen and diatom spectra showed minimal change over the investigated time period. Although modest, the most notable change in the diatom relative abundances was a subtle decrease in the dominant planktonic Cyclotella ocellata and a concurrent increase in small, benthic fragilarioid taxa in the similar to 1820s, suggesting higher ecosystem variability. The pollen record subtly indicates three periods of increased cattle grazing activity (similar to 1400-1480 AD, similar to 1630-1760 AD, after 1850 AD), but shows generally no significant vegetation changes during past similar to 600 years. The minimal changes observed in the tree-ring, diatom and pollen records are consistent with the presence of localised cooling centres that are evident in instrumental and tree-ring data within the southeastern and eastern Tibetan Plateau. Given the minor changes in regional temperature records, our complacent palaeoecological profiles suggest that climatically induced ecological thresholds have not yet been crossed in the Nianbaoyeze Mountains region. KW - Tibetan Plateau KW - Nianbaoyeze Mountains KW - Pollen KW - Diatoms KW - Tree-ring KW - Climate change KW - Human impact Y1 - 2014 U6 - https://doi.org/10.1007/s10933-013-9747-1 SN - 0921-2728 SN - 1573-0417 VL - 51 IS - 2 SP - 287 EP - 302 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Marquer, Laurent A1 - Gaillard, Marie-Jose A1 - Sugita, Shinya A1 - Trondman, Anna-Kari A1 - Mazier, Florence A1 - Nielsen, Anne Birgitte A1 - Fyfe, Ralph M. A1 - Odgaard, Bent Vad A1 - Alenius, Teija A1 - Birks, H. John B. A1 - Bjune, Anne E. A1 - Christiansen, Jörg A1 - Dodson, John A1 - Edwards, Kevin J. A1 - Giesecke, Thomas A1 - Herzschuh, Ulrike A1 - Kangur, Mihkel A1 - Lorenz, Sebastian A1 - Poska, Anneli A1 - Schult, Manuela A1 - Seppa, Heikki T1 - Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - We present pollen-based reconstructions of the spatio-temporal dynamics of northern European regional vegetation abundance through the Holocene. We apply the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using fossil pollen records from eighteen sites within five modern biomes in the region. The eighteen sites are classified into four time-trajectory types on the basis of principal components analysis of both the REVEALS-based vegetation estimates (RVs) and the pollen percentage (PPs). The four trajectory types are more clearly separated for RVs than PPs. Further, the timing of major Holocene shifts, rates of compositional change, and diversity indices (turnover and evenness) differ between RVs and PPs. The differences are due to the reduction by REVEALS of biases in fossil pollen assemblages caused by different basin size, and inter-taxonomic differences in pollen productivity and dispersal properties. For example, in comparison to the PPs, the RVs show an earlier increase in Corylus and Ulmus in the early-Holocene and a more pronounced increase in grassland and deforested areas since the mid-Holocene. The results suggest that the influence of deforestation and agricultural activities on plant composition and abundance from Neolithic times was stronger than previously inferred from PPs. Relative to PPs, RVs show a more rapid compositional change, a largest decrease in turnover, and less variable evenness in most of northern Europe since 5200 cal yr BP. All these changes are primarily related to the strong impact of human activities on the vegetation. This study demonstrates that RV-based estimates of diversity indices, timing of shifts, and rates of change in reconstructed vegetation provide new insights into the timing and magnitude of major human distribution on Holocene regional, vegetation, feature that are critical in the assessment of human impact on vegetation, land-cover, biodiversity, and climate in the past. KW - Holocene KW - Human impact KW - Northern Europe KW - Pollen KW - Quantitative regional plant abundance KW - Rate of compositional change KW - REVEALS (Regional Estimates of VEgetation KW - Abundance from Large Sites) model KW - Vegetation diversity indices Y1 - 2014 U6 - https://doi.org/10.1016/j.quascirev.2014.02.013 SN - 0277-3791 VL - 90 SP - 199 EP - 216 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Ni, Jian A1 - Birks, H. John B. A1 - Böhner, Jürgen T1 - Driving forces of mid-Holocene vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric CO2 concentrations JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Numerous pollen records across the upper Tibetan Plateau indicate that in the early part of the mid-Holocene, Kobresia-rich high-alpine meadows invaded areas formerly dominated by alpine steppe vegetation rich in Artemisia. We examine climate, land-use, and CO2 concentration changes as potential drivers for this marked vegetation change. The climatic implications of these vegetational shifts are explored by applying a newly developed pollen-based moisture-balance transfer-function to fossil pollen spectra from Koucha Lake on the north-eastern Tibetan Plateau (34.0 degrees N; 97.2 degrees E; 4540 m a.s.l.) and Xuguo Lake on the central Tibetan Plateau (31.97 degrees N; 90.3 degrees E; 4595 m a.s.l.), both located in the meadow-steppe transition zone. Reconstructed moisture-balances were markedly reduced (by similar to 150-180 mm) during the early mid-Holocene compared to the late-Holocene. These findings contradict most other records from the Indian monsoonal realm and also most non-pollen records from the Tibetan Plateau that indicate a rather wet early- and mid-Holocene. The extent and timing of anthropogenic land-use involving grazing by large herbivores on the upper Tibetan Plateau and its possible impacts on high-alpine vegetation are still mostly unknown due to the lack of relevant archaeological evidence. Arguments against a mainly anthropogenic origin of Kobresia high-alpine meadows are the discovery of the widespread expansion of obviously 'natural' Kobresia meadows on the south-eastern Tibetan Plateau during the Lateglacial period indicating the natural origin of this vegetation type and the lack of any concurrence between modern human-driven vegetation shifts and the mid-Holocene compositional changes. Vegetation types are known to respond to atmospheric CO2 concentration changes, at least on glacial-interglacial scales. This assumption is confirmed by our sensitivity study where we model Tibetan vegetation at different CO2 concentrations of 375 (present-day), 260 (early Holocene), and 650 ppm (future scenario) using the BIOME4 global vegetation model. Previous experimental studies confirm that vegetation growing on dry and high sites is particularly sensitive to CO2 changes. Here we propose that the replacement of drought-resistant alpine steppes (that are well adapted to low CO2 concentrations) by mesic Kobresia meadows can, at least, be partly interpreted as a response to the increase of CO2 concentration since 7000 years ago due to fertilization and water-saving effects. Our hypothesis is corroborated by former CO2 fertilization experiments performed on various dry grasslands and by the strong recent expansion of high-alpine meadows documented by remote sensing studies in response to recent CO2 increases. KW - Tibetan Plateau KW - Pollen KW - Holocene KW - Transfer function KW - Kobresia meadow KW - Atmospheric CO2 concentration Y1 - 2011 U6 - https://doi.org/10.1016/j.quascirev.2011.03.007 SN - 0277-3791 VL - 30 IS - 15-16 SP - 1907 EP - 1917 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wang, Yongbo A1 - Liu, Xingqi A1 - Herzschuh, Ulrike A1 - Yang, Xiangdong A1 - Birks, H. John B. A1 - Zhang, Enlou A1 - Tong, Guobang T1 - Temporally changing drivers for late-Holocene vegetation changes on the northern Tibetan Plateau JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Fossil pollen records have been widely used as indicators of past changes in vegetation and variations in climate. The driving mechanisms behind these vegetation changes have, however, remained unclear. In order to evaluate vegetation changes that have occurred in the northern part of the Tibetan Plateau and the possible drivers behind these changes, we have applied a moving-window Redundancy Analysis (RDA) to high resolution (10-15 years) pollen and sedimentary data from Lake Kusai covering the last 3770 years. Our analyses reveal frequent fluctuations in the relative abundances of alpine steppe and alpine desert components. The sedimentary proxies (including total organic carbon content, total inorganic carbon content, and "end-member" indices from grain-size analyses) that explain statistically some of the changes in the pollen assemblage vary significantly with time, most probably reflecting multiple underlying driving processes. Climate appears to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, a gradual decrease in vegetation cover was identified after 1500 cal a BP, after which the vegetation appears to have been affected more by extreme events such as dust-storms or fluvial erosion than by general climatic trends. Furthermore, pollen spectra over the last 600 years are shown by Procrustes analysis to be statistically different from those recovered from older samples, which we attribute to increased human impact that resulted in unprecedented changes to the vegetation composition. Overall, changes in vegetation and climate on the northern part of the Tibetan Plateau appear to have roughly followed the evolution of the Asian Summer Monsoon. After taking into account the highly significant millennial (1512 years) periodicity revealed by time-series analysis, the regional vegetation and climate changes also show variations that appear to match variations in the mid-latitude westerlies. KW - Asian Summer Monsoon KW - Late-Holocene KW - Pollen KW - Procrustes analysis KW - Redundancy analysis KW - Tibetan Plateau KW - Vegetation KW - Westerlies Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2012.06.022 SN - 0031-0182 VL - 353 IS - 8 SP - 10 EP - 20 PB - Elsevier CY - Amsterdam ER -